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A B-spline Tensor for Vectorial

Quasi-Interpolant

Fabrice Dodu

Abstract. The aim of this paper is to introduce new techniques and
new tools for vector field approximation. We do so by building the equiva-
lent of B-splines, which are now tensor B-splines, as shown below, and by
appling to the discretization based on a regular grid of a differential op-
erator a fundamental solution of it, as done for polynomial B-splines and
polyharmonic B-splines (see [5,6]). We thus obtain quasi-interpolants in
the vectorial case whose properties generalize the properties of the quasi-
interpolants generated by using B-splines. All this is done in the case
when the data lie on a regular infinite grid.

§1. Introduction

Fluid mechanics, meteorology and more and more other applications need
approximate functions from R 3 to R32. Given some discrete vectorial data,
we want to get a function interpolating or approximating the data. At first
glance, we may think of doing this with three independent approximations
of the data (one for each component of the data). Of course this can be
done, but it usually gives poor results since there is no connection between
the various components of the approximation function, while the applications
may require, for example, a divergence-free (or a rotational-free) function. In
order to take into account this kind of connection, we want to determine the
function interpolating the data and minimizing a seminorm over all vectorial
functions interpolating the data. The seminorm which is minimized is based on
the Helmholtz decomposition of vector fields into a rotational and a gradient
part (p Ildiv. 112+ llrot. 112). This will be presented in detail in the forthcoming
thesis [2]. The weight p is introduced to allow the rotational part of the field
to dominate the gradient part and so in the so obtained function [2].

In order to determine the interpolating vector, we need to solve a linear
system which is usually large (three times the number of data) and badly
conditioned. This is why in this paper we do not propose to interpolate,
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but instead approximate the data by building a quasi-interpolant based on
B-splines. Note that if (zi)'Ul are vectors and if we want to get a vectorial
function S such that S(x) = >m Bi(x) zi (as we do in the scalar case with B-
splines Bj), we need that the functions Bi are matrix and not scalar functions
as in the case of scalar approximation in R or Rd. This is why the tools we
build are tensors.

Now, in order to build this "B-spline Tensor", we will use the same strat-
egy as for polynomial and polyharmonic B-splines: we will discretize the
differential operator Pm,p (D) defined in [2] and apply to this discretization a
fundamental solution of Pm,p (D), thus obtaining a kind of approximation of
the Dirac tensor 6 13. All this is done on a cardinal grid (i.e. a regular infinite
grid).

For our three-dimensional problem [2], we choose the 3 x 3 differential
matrix defined by

Pm,p (D) = (-1)mAm-1 [pVdiv • -rot (rot.)],

where div is the divergence operator, V is the gradient operator, rot is the
rotational operator and p is an arbitrary positive parameter.

We remark that if p = 1, then Pmo, 1 (D) = (-1)m A m I3, where 13 is the
identity matrix of R3 , so we obtain three independent operators (one for each
component), each one being as in ([5]).

In the first part of this paper we give the construction of a discretization
of Pm,,-. (D). In the second part, we define polyharmonic B-spline tensors and
give the main properties. In the last part, we study the associated vector
quasi-interpolants, and in particular prove their 'Pk-reproduction.

Notation: Let m be a integer with m > 2. JP, denotes the set of polynomial
with variable in JR3 of total degree at most n and P, = IP, X IPn x ]n. D'
denotes the set of distribution of JR3 and D' = D' x D' x D'. Let f : R 3 ý-* R
be a scalar function of a three dimensional variable. Let

( 02 f3- 03f2
rotf = [03fl - 01if3

01 f2 - 092 fl

be the rotational operator, and let divf = a 1 fl + 02f 2 +0 3f 3 be the divergence

operator. Let A m  . (E i. 92)m. F(g) is the Fourier transform of the

function (or distribution) g. For all R E J 3 , sin (C) denotes the vector defined
by V1 < i < 3, sin(()i = sin((j). 6 denotes the Dirac distribution. Let

Vým+ be the function such that : Vmý+ = 2 :2m-1. All tensors
will be denoted with bold capital letters (i.e. X,...). Let h > 0, and i be
such that: 12 -= 1. (ei)j= 1 denotes the canonical basis of R 3 . For k E N
and i = 1, 2, or 3, 6k denotes the kth divided difference of step h definedh1 2 2x hx h: o~ We useby (h,i f) (x) = f~x hei) -- f -- hei)• 6 h ~,k7 1 h Weus

standard multi-index notations. If C e JN3 and jii = al + a2 + a3, then
Da = " a2 3 ( 0 = X C1X2Xa3•

(aXT) O 2 )
0

2 TaXT)"3 1 1 2 3
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§2. Discretization of Pm,p(D)

The goal of this section is to define an approximation of Pm,p (D) which should
reproduce polynomials of largest possible degree (in the sense defined below).
We now introduce the Pk-exactness of an operator, and a ]Pk-exact approxi-
mation of D'.

Definition 1. An operator E' is said to be a ]k-exact (resp. Pk-exact) ap-
proximation of an operator E iff for any function f, E' f is a linear combination
of translates of f and for any p E lPk (resp. p E Pk), E'p = Ep.

Remark. h-'Oh,i is a ]P2 -exact approximation of

Definition 2 . Let D1 be the operator defined by

DhliN (--1)k (k!)2 (lh,io0 2k"
h YN= 2h (2k + 1)-. 6 h,i"

k=0

For any a z N 3 , we define an approximation of step h and level N of D' to be
the operator defined by

Dh,N = (Dk,l,N] o (Dk ,2 ,N] o \ (Dh, 3,

In the same way, Pm,p (Dh,N) denotes the approximation of Pm,p (D).

Proposition 3. Let a E IN3 and D' be defined as above. Then, for all

mappings f from ]R3 to R, there exists real constants (c,) such that

Jr(D•,Nf) = (hlc LyI•(2N a cy(sin(7rh.)Y•y (f)"

Ixyl=(2Y+1)l-l

Proof: For every 1 < i < 3,

-(65,if) (C) = (exp (i-rh(C) - exp (-7rh(i))..F(f) (C) = 2Tsin (h()i.F (f) (C)

By applying the Fourier's transform to the (2N + 1) jal centered differences
of D',Ng we obtain the result. 0

Proposition 4. Let a E IN3. Then
i) DN is a IPIQI+2N+l-exact approximation of D".

ii) Pm,p (Dh,N) is an approximation of Pm,p (D) which is P2m+2N+l-exact.

Proof: We prove by induction on lal that for all f E C2N+2+1lc, there exist
cx real constants such that

Dha,Nf = Daf + cI[DIf (N).
1-yl=2N+2+[al
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In the following, for any -Y E VN
3, d.', el, are real constants. The proof for

lal = 1 is due to Steffensen in ([7]). Suppose that it is true for Iae = m. Let
jal = m + 1, f E C2N+2+m+1 and let us choose i such that ai 4 0. Then

Df h,i,N D h,N )

= Dlh,i,N (Dc-' -f +IV=N2m c-D- f(¢)

[-yI=2N+2+m/

SD fDc -e+ dyD'y (Dc-ee f ((_,)) + c cD f(•-•)
[3yl=2N+3 1Jy=2N+3+m

yl=2N+3+m

Thus, we get the result if we note that Pm,p (D) is a differential operator of
degree 2m. 0

§3. B-spline Tensors Associated with Pm,p(D)

Lemma 5. Let v7m+1 be such that (-1)m+1 Am+lim+j = 6 in D'. Let

-= (-1)m V 2 i•m+i

P
(02,2 +' 03,3) V'm+1 0

I, 2 Vm+I ,3 Vm+l

+ (-1)M ( 12,2Vm+l ( + 03,3) Vm--+1 
0

2 3 V'm+1

I 02,3 Vm+l -- 92,3 Vn+1 (19, 1 + 02,2) Vm±+l

Then Pm,p (D) X 613.

Definition 6. LetX be a fundamental solution tensor of Pm,p (D).X = 613.
We define the level N and step h B-spline tensor associated with the operator
Pm,p (D), to be the tensor Bh,N,p defined by Bm~' V Pm,p (Dh,N) k.

Remarks.

a) Bm'° is not a symmetrical tensor.

b) Ifm is even, we can prove the existence of a differential matrix RM, (D)
of degree m such that : Pm,p (D) = R-,p (D) Rn-,p (D) and we can
construct a symmetrical tensor ChN,p defined by

Cm'p =3

h,N h R-,p (Dh,N) f( R ,p (Dh,N).

Lemma 7. The elements of (B )• are in the set of tempered dis-

tributions on 1R3 .
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Denoting by T (BN the Fourier transform applied to each element of

the tensor Bh,, we obtain the following theorem:

Theorem 8. With the above notation,

i)s Bm) (0) = h3  ,i) h,N()= .I3,

ii) Vy E N, 1-y 2N + 1 ; D"Y B-,B (0) =O,

iii) VI < j,l < 3, (Bh,) (t) ot-+c (OtL-2N-5),

iv) Vk + ', V * y E , 1-y <2m-1 ; DYY(B )(
v) B P = "Ph,g = 1N (h)

Proof: For i)-ii), we use Definition 2 and Proposition 3. By the Taylor

expansion of sin, near 0 we obtain .T Bh,) (C) - h3 .I3+Q (C), where Q3()

is such that for all i and j such that 1 < i, j < 3, there exist real coefficients
cJ such that Qjj (C) = EZaj_2N+2m+4 Cz1-C -• Thus, we obtain the
results.

We prove iii). By using the above expression of Q, D'YF are

integrable near 0 if and only if 2N + 2 - 1-yI > -3. Using Proposition 3
and Lemma 5, there exist real coefficients d'jk and for all i and j such that
1 < i,j < 3

3 1
(re~p) (• ~ iJ,k (sin (rh())'kj

". (B'N) i(j (o = L2 d+
k=1 aIl=2m(2N+1) C 12w,(1

2m+ 2

As a consequence, the elements of. " BhN )are bounded at infinity by ratio-
nal fractions of degree -2m. D'Y.F BhN J,

(B mp) are integrable near infinity if and

only if -2m - [-yI < -3. Then, D'YY B are nt 3

( ),), ar-nerbe nRif2
171 > -3 and -2m - 11yj < -3. Thus, DY B, J - ° (ItI -2N-4),

(hNj I tI-.+ Oto
for all 1 < j, l < 3. Using [4], the last expression may be strengthened to

D-T (Bmp) = O (ti-2N-5), 1 < J,l < 3.

\ h'g) ,l It,- +,+o, - -

We now establish iv). For all j in 7Z3, -y in IN3 and positive h, we have
DF (Bm,) (i) = 0 iff D"Y (Pm,p (Dh,N)) (0) = 0. Now by using Proposi-

tion 3, we have, for all tensors Y and all -y in IN3 such that -y - 2N+2m+1:

D-1 (.F(Pm,, (Dh,N) Y)) (0) = D-Y (F(Pm,p (D)) (0) F (Y) (0))
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Furthermore, Y (Pmp (D)) is a polynomial matrix of degree 2m so VI-Y •5
2m - 1, D'J7 (Pm,p (D)) (0) = 0. This gives iv).

Finally, we prove v). According to the Fourier transform's properties, v)
is equivalent to

3p rpV(I
3 .

Now, from the definition of Bh,", we derive for any ( in 1R3,

F- (B1,hP) (h. C) Y (Pp (DiN)x (h C)

=F(Pm,p (DN)) (h. C). (Pm,p) (h. )-I.

Using Proposition 3, we have

97 (Pm,p (D0,N)) (h. C) = h 2 ,j7 (Pm,p (Dh,N))(C),

Y(Pm,p (D))- 1 (h. -) h- 2m- (Pm,p (D))- 1 (),

and thus V( E R3,

9F (B-l,)) (h' C) = F(Pm,p (Dh,N)) ()0 7(Pm,p (D)) (C)

Remarks.

a) These polyharmonic B-spline tensors may be considered as a regularisa-

tion of the Dirac distribution tensor 613.

b) We obtain the same properties with C'

§4. Associated Vector Quasi-Interpolant

Given vectorial data (zj)jC,2z3, in this section we define a vector field S ap-

proximating the data (jh, zj)jEZ3 (i.e. such that S (jh) 2- zj for all j in

2Z3), by using the above defined tensor B-splines. This vector generalizes the
polyharmonic B-spline quasi-interpolant (see [5,6]).

Definition 9. Let B`, be the level N and step h B-spline tensor associated

with Pm,p (D). For all j E 7Z3 , let zj E R 3 , and let z = (zj)jE2Z3. Then
the vector quasi-interpolant of step h and level N associated with the operator
Pm,p (D) and the (jh, zj)jE2Z' data, is the vector function defined by

mr,p

SBhN (" -- jh) Zj.
jGCZ3
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Theorem 10. Let I = inf {2N + 1, 2m - 1}, and suppose there exists p E P,
such that for all j in 7Z3 , zj = p(jh). Then, Sh,};; = p. We say that the
vector quasi-interpolant of step h and level N reproduces P1. As a particular

case, Shm 1 reproduces P2m-1.

Proof: The proof is based mainly on Poisson's egality and Theorem 8. It
follows along the same lines as the proof in [3] in the scalar case. El

Remarks.
a) 2m - 1 is the maximal order of reproduction.

b) We obtain the same properties if we define the vector quasi-interpolant
using by the symmetrical tensor C',.

c) A similar problem is studied in 12 in ([1]), where using another discretiza-
tion of P2,p (D), the authors obtain a vector quasi-interpolant which is

(]p (R2)) 2 -reproducing.

Theorem 11. Let f be a vector function of C (R3)k-class and all partial

derivatives of order k being bounded over R 3 . Let Sh,; be the above defined

vector quasi-interpolant associated to the (jh, f (jh) ) data. Then

{ O (hk) ifk < 2N+ 1,Su p ShN f-- 1
sup ISh,; (t) -- f (t) h--0 0 (h 2N+ 2 1 In (h) 1) if k > 2N + 2.

iCR
3

Proof: The proof follows that of Theorems 4.11, 5.1 and 5.6 in [3]. El
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