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On Lacunary Multiresolution Methods
of Approximation in Hilbert Spaces

Lubomir T. Dechevski and Wolfgang L. Wendland

Abstract. We study lacunary multiresolution methods from the point
of view of their analogy to the use of near-degenerate elements in finite
and boundary element methods. The main results are characterization of
the best N-term approximation of solutions of nonlinear operator equations
and best N-term approximation by near-degenerate normal approximating
families in Hilbert spaces.

§1. Introduction

This communication is part of a sequence of papers exploring the use of near-
degenerate elements in finite- and boundary-element methods (see also [5,6]
and their wavelet-based analogues, lacunary multiresolution methods. The
use of near-degenerate and lacunary methods for solving operator equations
is of considerable practical significance because in many important problems
arising in industry, engineering and natural sciences, the use of such methods
leads to a dramatic reduction of execution time and/or computer resources.
The theoretical justification for the use of such methods is, however, very
challenging: it has been successfully carried out only in a number of special
cases, by specific techniques which vary from case to case. The purpose of
this sequence of papers is to develop a general approach to overcoming the
challenges of the use of lacunary multiresolution and near-degenerate finite
and boundary element methods. Because of the limited space available, we
shall consider only multiresolution methods for operator equations in Hilbert
spaces, with an outline of the main ideas of the proofs, which in the Hilbert-
space case are simpler and relatively short. A much more technically involved
and detailed discussion of both near-degenerate finite elements and lacunary
multiresolution methods and the important parallel between them will be
given for more general types of nonlinear operators in quasi-Banach spaces in
a later paper.
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§2. Approximate Solutions of Nonlinear Operator Equations

In this section we consider a general class of nonlinear operator equations,
and study the numerical solutions of these equations obtained by iterative
and projection methods.

Let X, Y be real Hilbert spaces. The class of nonlinear operators to be
considered is the space LH(X, Y) of all Lipschitz homeomorphisms F between
X and Y, that is, 3 F- 1 on Y and 3 C(F,X,Y) < o0: IIF(xi) - F(x2)jIy •5
CI xa - x211X, VxIVx2 E X, and analogously for F-'.

Let H be a Hilbert space, such that X n Y C H and X n Y is dense on
H, and let Y be the dual of X pivotal to H, i.e., the dual with respect to the
duality functional defined by the scalar product of H. We shall denote this
dual by Y = X* = X*(H).

Definition 1. Let Y = X*(H). The (generally nonlinear) operator F : X
X* is called Lipschitz, if

3C(F,X, H) < o0 : IIF(xi) - F(X2)IIx- _• CiJXl - X21[X, (1)

VxIVx 2 C X, and strongly monotone, if

3c(F,X,H) > 0: (F(x,) - F(x 2),xl - X2)H >_ clx 1 - x2 1, (2)

VXlVX2 E X. The class LSM = LSM(X, H) consists of exactly those F
X -* X*(H) which satisfy (1,2).

It can be shown that the constants C and c in (1,2) are related by c < C.
It should be noted that the typical case here is X '-* H - X* or X +-

H +-' X*, where, as usual, A '-4 B or B +-- A denotes continuous embedding:
A C B and 11II1B •5 CII.IIA.

Theorem 1. (Generalization of Theorem 18.5 in [11] and strengthening of
Theorem 18.5 in [15] for the case of Lipschitz operators in Hilbert spaces.) Let
X and H be Hilbert spaces with the same cardinality. Then, LSM(X, H) C
LH(X, X*(H)).

Proof: (Outline.) By duality arguments, it can be shown that the cardi-
nality of X*(H) is equal to that of X and H. Therefore, since all spaces
are Hilbertian with the same cardinality, there exist linear invertible oper-
ators R : H --* X and S : H --* X*(H) which are isometric together
with their inverses. Hence, the equation F(x) = y, x E X, y E X*(H) is
equivalent to the equation Av = w, v,w E H, where Av = S-1FR. Now,
since F E LSM(X,H), it follows from 1FS-'I[x._H = IIRIIH-x = 1, that
A E LSM(H, H). Therefore, by Theorem A (see below), F is bijective from X
to X*. By a condition of the theorem, F is Lipschitz; it remains to prove the
same for F-1. Indeed, by the strong monotonicity of F, setting x, - F-!(yl),
X2 = F-'(y2), VylVy2 E X*, we get

S- F-'(y 2 )IX -Y1y - Y2, F-!(yl) - F-I(y2)),
c

< 1ily1 - Y211x*lIF-l(y,) - F- (Y2)IlX,
c

which completes the proof. ElI
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Theorem A. (See [11], Theorem 18.5). Assume that X = X* = H. Then,
LSM(H, H) C LH(H, H) and the operator T,,y(x) = x - e[F(x) - y], x E H,
is contractive in H for 0 <6< c uniformly in yE H, where C and c are
defined in (1,2). The best contraction factor is 1 - c2/C 2 and is achieved for
6 = c/C 2 .

Following the idea of the proof of Theorem 1, Theorem A can be modified
for the case when X : H. We omit the details.

In the remaining part of this section we shall consider methods for ap-
proximate solution of the equation F(x) = y, x E X, y C Y, where X, Y are
Hilbert spaces.

Definition 2. (See [12]). Let X be a Hilbert space. G C X is called an
existence set for X, if Vx E X 3gx E G : I1x - glIx = mingcEG Jix - gIIx =
EG(x)x. (The best approximation gx need not be necessarily unique.) The
sequence {GN}N=i, GN C X is called a normal approximating family in X, if
for any N E IN, GN is an existence set, with GN c GN+1 and GN - GN-1 C
G2N.

Obviously, an existence set in X is closed in X (typical example: any
finite-dimensional subspace of X).

Definition 3. Let X be a Hilbert space. The sequence {GN}l=1 : GN C X
is said to have the strong approximation property (SAP, for short) if U'= 1 GN
is dense on X in the inner-product topology of X.

Let us consider now the Galerkin-Petrov projection methods. Let PN
X -+ X, QN : X -+ X be projectors with dim PN(x) = dim QN(X) = N,
and PNPN+1 = PN+1PN = PN, QNQN+1 = QN+1QN = QN.

Example 1. (Galerkin-Petrov method for monotone operators.) For a Hilbert
space X, let Y = X* (H). The equation F(x) = y, x E X, y E X*, is replaced
by QNF(PNx) = Q*Ny, where Q* : X* X Z*,dim QN (X*) = N, is the
Banach adjoint of QN. The N x N nonlinear system is determined by

(QNF(PNX), QNh)H = (Q*NY, QNh)H. (3)

By Lemma 23.1 in [15], it follows that if F E LMS(X, H), where X and
H are separable, then (3) has a unique solution for N large enough.

In the case X = X* = H, if N is large enough, so that QNF(PNH)
Q* H holds, then, by Theorem A, (3) can be computed by quickly converging
contractive iterations. For small N, the condition Q*NF(PNH) = Q* H may
fail even if F is linear and PN = QN (see [2], Theorem 10.1.1).

If F is twice Gateau-differentiable, then Newton's method can be used
where the inverse matrix involved in each iteration is usually sparse. In gen-
eral, this method needs an appropriate initial approximation x0 to the solution
of F(x) = y, but if F is strongly monotone and potential, that is, if there exists
a real functional f : X --+ R such that F = grad f, then, by Theorem 5.1 in
[15], f is strictly convex and the solution of (3) is equivalent to minimizing the
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three times Gateau-differentiable functional f. Hence, Newton's method con-
verges to the solution of (3) for any x0 E X, the rate of convergence depending
on the constant c in (2). This technique is still numerically efficient if F is only
Lipschitz, and Newton's method or its various modifications be replaced by
the respective variants of the more general F. Clarke's subdifferential method.
In the case of potential F, the Bubnov-Galerkin method (PN = QN) coincides
with the Ritz method for minimization of f.

For projection methods (see Example 1), the strong approximation prop-
erty can be written as limlV-o II(Ix - PN)XIIX = 0. A typical example
when GN = PNX forms a NAF having the SAP is when PN is obtained by
multiresolution.

By Theorem 23.3 in [15], if X is separable, then GN = PNX, as defined
in Example 1, has the SAP; by Lemma 23.1 in [15] and in view of F E
LMS(X,H), the solution'XN of (3) exists for N large enough and IiXN -
xlix -* 0, where x is the solution of F(x) = y, y E X*.

Theorem B. (Cda's lemma for nonlinear operators (see [13], Lemma 2.8;
[11], Theorems 4.1 and 18.8.) Under the assumptions of Example 1, for F E
LSM(X,H), let x = F- 1 (y) E X be the solution of F(x) = y E X*(H), and
x,, E X be the solution of (3). Then,

3C(F,X,H) < oo: EN(F-1 (y))x 5 11F7-(y) - XNIIX < CEN(F-1 (y))x.

This result shows that Galerkin-Petrov methods (of any type - finite el-
ement or wavelet) achieves the best approximation rates up to a constant
factor.

§3. Best N-term Approximation

For the general paradigm of best N-term approximation (BNTAP) we refer
to [12], section 3.5, and [8].

Definition 4. Let Xj, Yj, j = 0, 1 be Hilbert spaces, X 1 -+ Xo, Y, - Yo,
and let F E LH(Xo,Yo) n LH(X1 ,Y1 ). The NAF {GN}O=I : GN C X 1, is
called near-degenerate of order (A;a, 3), A > 0, a > 0, 13 > 0, if it satisfies a
direct inequality of the type

IC < oo: EN(F-'(y))x _ ý C ,F1(y)J~x1 Vy E Y1, (4)

N,\

where C = C(N), with C N'; and an inverse inequality of the type

3D < oo: JIxllx, < DNgIIxIlxo, x c GN, (5)

where D = D(N), with D >NV. The partial case a = 3 = 0 corresponds to
a non-degenerate (regular) NAF.
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Consider the approximation space

00

A'(Xo) := {f E Xo: 1If IAZ(Xo) = (11f 11.o + )7 E(f)xo]q)l/q < oo}
j=0

(6)
and the real interpolation space

(YO,Yi)O,q := {f E X 0 : I1IfI(Yo,Y1)0,, =
00

(I1fII1 0  + E [2j g(2-j, Yo )lq)1/q < cc}, (7))

j=0

where K(t,f;Yo,Y,) is Peetre's K-functional (see [2,12]), 0 < t < 00, S >
0, 0 < 0 < 1, 0 < q < cc (with the usual sup-modification in (6,7) for
q = cc). (Recall that X, --* Xo, which explains the presence of the saturation
term Ilfllo in (6,7).)

Theorem 2. (Characterization of the best N-term approximation of solu-
tions of nonlinear operator equations by near-degenerate NAF in Hilbert
spaces). Assume that the conditions of Definition 4 hold. Let 0 < q < oo.
Then,

(i) if 0 < a < A and s :0 < s < A- a, then, 3C 1 <co:

IiF-'(y)IAg(Xo) <- C,[IIF-I(0)jjx, + IIYII(Yo,Yy1) _,q]; (8)

(ii) if0>0 and0<s < A+±f, then 3C2 <cc:
IIyI(Yo,y 1) _, _< C2[lIF(O)fIy, + IIF-(Y)IIae(xo)]. (9)

Proof: (Outline.) By a standard technique, typical for BNTAP (see [12],
Theorem 3.16 and Corollary 3.7), we prove

IIF-1(y)IAlm(xo) <_ c1IIF- 1(Y)II(Xo,Xi)_.,,,, (10)

IIF-'(y)jj(xo,x1)'0,q <ý e2jjF-1(y)ja-,(xo). (11)

By obtaining appropriate upper bounds for the K-functionals in the definition
of (Xo, Xi)o,q and (YO, Yi)e,q, 0 < 0 < 1, and using the embeddings X1 '-- Xo,
Y' -- Yo, it can be shown that, for Lipschitz operators F, F-1,

11F-'(y)II(xo,x1) _9,q <- Ca(IIF-1(0)Ijx1 + IIYII(Yo,Y 1 .,), (12)

IIF(x)II(yo,Y ,)9,q <_ c4(IIF(O)IIy1 + Ilxll(xo,x1) + (13)

hold. Combining (10) with (12) and (13) with (11), we arrive at (8) and (9),
respectively. E
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Corollary 1. Under the conditions of Theorem 2, let 0 < s < A - a, and
assume that F(0) = Oy,, F-1 (0) = Ox,. Then,

(Yo, Yx) _, - A'(Xo) - (Yo, YI) --•,,,q. (14)

In particular, if a =/3 = 0, then

(Yo, YI) ,q = A'(Xo) (15)

(isomorphism of the spaces, equivalence of the Hilbert norms).

Note that this special case corresponds to sublinear operators.

Remark. If the dependence of C in (4) and/or D in (5) on N is weaker than
polynomial, e.g., logarithmic, then the left-hand and/or right-hand embedding
in (14) can be sharpened by setting a = 0 and/or /3 = 0 and modifying the
index q. We omit the details.

Multiresolution Galerkin-Petrov methods for monotone operators (Ex-
ample 1) are included as partial cases in Theorem 2 and Corollary 1. For
monotone operators, we have Y0 = X*(HO), Y1 = X*(H 1), where H0 , H1
are Hilbert spaces with H0 +-' H1 which are sufficiently far away from each
other so that Xo ý-- XI and X*(Ho) +- X*(H 1 ) hold simultaneously. Here
X1 n Y1 is assumed to be dense in H0 and H1 . The projectors PN and QN
in Example 1 are assumed generated by multiresolution, which ensures that
GN - GN-1 C G2N.

In the rest of this section and in the next section we shall discuss how
to reduce the rates a and /3 in Theorem 2 and Corollary 1 to zero in the
presence of near-degeneracy. To this end, we shall study the analogue of
the phenomenon of near-degeneracy with multiresolution methods based on
biorthogonal wavelets.

One equivalent norm in the inhomogeneous potential spaces HS (cf., e.g.,
[14,4] for p = q = 2) is given by

co 2n -1

IIflIH× { f E + Z2 2 3s 12"-Y2I/s E Y }k (16)
kE2Zn j=0 ke7n 1=1

with 0 < s < r, where in [8] r is the Lipschitz regularity of the compactly
supported scaling functions o E H', o C Hr and wavelets 011] E H', ý['] G
Hr of the biorthonormal wavelet bases, with respect to which f C HS can be
expanded as follows:

00 2 ni

f(x) = E aOkOk(X) + E E ES /3[']I',(x) a. e. x, (17)
kEcZZ j=0 kE2n 1=1

where aok = (f,ýok)L2 , /3k = (f, ib)L 2. Each hypercube in the Calderon-
Zygmund decomposition of ]R' and Stein's construction of Whitney-type



Lacunary Multiresolution Approximation 187

extension operators corresponds to 2n - 1 basis functions . Pk, 11 =

1,..., 2' - 1, in each of the two biorthonormal bases. The convergence in
(17) is in the norm topology of Hs, but also Lebesgue a.e. on the domain Q
of the functions. n may be Rn, hyperrectangle, correspond to the periodic
case, or even general Lipschitz-graph domain. We refer to the currently most
advanced work on this topic [3], as well as to the extensive account [4] (for the
case of homogeneous potential spaces, see [7], in the special case p = q = 2).

Definition 5. Let ji E V. A non-degenerate wavelet-based projector (NWP)
is denoted by Pjl and defined by

ji-1 2n_-1

Pj1f(x) = Za ok o (x)+ E j E YŽ, (18)
k j=0 k 1=1

cf. (17). A near-degenerate wavelet-based projector (NDWP) is denoted by Pjl
and defined by

J(ji,k)-I 2'-1

P~jf (x) = aOkWOk W) + E Ej E 0[11P [1](x) x E Q2, (19)
k k j=O 1=1

Vk J(ji,k) > J(ji - 1,k), J(jik) Žii; 3kj, : J(jl,kj,) = j1. (20)

In other words, for a NWP J(jl, k) =j = const, uniformly in k. Thus,
NDWP's are a specific partial case of lacunary wavelet-based projectors (see
the concluding remarks in [4], subsection 6.2), lacunarity being with respect
to the NWP corresponding to J1 := maxk J(jl, k).

Example 2. One example when near-degenerate FEM or lacunary wavelet-
based projectors of NDWP type are needed is in the error analysis of numerical
solutions in the immediate neighbourhood of the boundary &2 (see, e.g., [11],
Fig. 3.14, 3.15, 6.14, 6.15, 8.12). Then it is desirable to ensure that the local
approximation rates near and on On do not deteriorate compared to the local
approximation rates in the interior of Q. Indeed, assume that OQ is regular
enough (Lipschitz or smoother). Then, by the trace theorem (see, e.g., [1,9]),
if f E Hs(Q), f2 C Rn, then the restriction of f on On is less regular, namely,

flan E H8- 1/2 (o02) holds. Then, the local approximation rate achieved via
NWP, given in (18), is 0( 2 -hls) in the interior of S and only 0( 2 -j1(s-1/2))
near OQ. To achieve the desired uniform distribution of the error in the interior
and near the boundary when f is smooth enough (s > 1/2), NDWP given in
(19,20) should be employed, with J(ji, k) zzý j, for k corresponding to the
interior of Q, and with J(ji, k) × Ciji + C2 otherwise, where

1C'2 >_ 0, C1 = 1 + -> 1. (21)2(s - 1/2)

In the context of Theorem 2 and Corollary 1, if Xj = H'j, j = 0, 1, with
so < s, so that X 1 --+ Xo is fulfilled, then it can be verified that for NWP
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both the direct inequality IIf - Pj, fIIxo •- C12-jlIIfIIx, and the inverse
inequality IIPj.f lix, •_ C 22J1AIIPj fIlxo hold, with A si- so and with
C 1, C 2 independent of ji. Hence, in Definition 4 a = 13 = 0 is attained. On
the contrary, for NDWP satisfying (21) the constants C1 and C 2 depend on
j' and a > 0, 0 > 0 holds.

In the case of NDWP, is it possible to somehow reduce a and 3 to zero,
thereby achieving isomorphism in (14)? It turns out that the answer is posi-
tive, and below we shall propose a general method how to achieve this.

Our approach will be consider more general spaces Xo, X 1 than HS, so
that, for the new X0 and X 1, a =13 = 0 holds. Consider the Hilbert space
HS,w with norm

cc 2n-1Ilfl~ ,•× (-- I012 + -- - 2w•(j'k)s E 10•[1112)1/2.
IIfIIH~ (E lc1k! + E E3 2 wiks jk-

k j=O k 1=1

The spaces from this scale still admit atomic decomposition via the same
Riesz bases of biorthonormal wavelets as HS. The weight w(j, k) is positive,
monotonously increasing function in j for each fixed k, and depends on the
choice of J(jl, k) in (20). The definition of w(j, k) is

w(J(ji, k), k) = ji, (22)

w(j, k) = ji - 1, j = J(ji - 1, k), J(ji - 1, k) + 1, ... , J(ji, k) - 1, (23)

Vj1 E IN Vk E 2Zn.
Now, take Xj = Hsi'w, j = 0,1, with so < sj. It can be seen that

X, -4 Xo holds, and we can consider this pair of spaces in the context of
Theorem 2 and Corollary 1.

Corollary 2. Under the conditions of Corollary 1, assume that Xj = Hs- ,
j = 0, 1, where w = w(j, k) is the left inverse (see (22,23)) of J(j, k) as defined
in (20). Assume also that N = 2j, and GN = PjXo, where the NDWP PJ,
is defined in (19), with the same J(j, k) in (20). Let s 0 < s < A = s1 - so.
Then (15) holds.

Proof. (Outline.) It can be verified that the bounds

00

II!- 1 1fZ 22( S 4O]21/
2  (24)

j=j' k:w(jk)Žj,

IIPjflIw,•-ý - ( 10a0k 1 + 3 5 2•"' -', 5 jk , (25)
k j=O k:w(j,k)!_jj I

hold. (Recall that Ji = mink J(jl, k), J1 = maxk J(ji, k).) After some com-
putations, (24) and (25) imply

Ilf - Pj ,fIIxo <- C12-j' IIflIx,, Vf E Xl, (26)
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I JPjfIIx1 _ c 22 1AIPjjfJjxo, Vf E Xo, (27)

with A = s, - so, and the constants C1 and C 2 in (26,27) do not depend on

31, i.e., for this choice of the spaces Xo, X, in Definition 4 a =,3 = 0 holds.
The result now follows from Corollary 1. Ii

Thus, we have solved the problem of characterizing the best approxima-
tion spaces induced by NDWP defined in (19) and (20). In this approach we
remained entirely within the classical BNTAP. There is also another approach
which goes beyond the general BNTAP, by abandoning the use of the real
interpolation functor. This approach leads to atomic decomposition of Wiener
amalgam spaces and will be considered elsewhere.
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