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Stable Local Nodal Bases for C1

Bivariate Polynomial Splines

Oleg Davydov and Larry L. Schumaker

Abstract. We give a stable construction of local nodal bases for spaces
of C' bivariate polynomial splines of degree d > 5 defined on arbitrary tri-
angulations. The bases given here differ from recently constructed locally
linearly independent bases, and in fact we show that stability and local
linear independence cannot be achieved simultaneously.

§1. Introduction

Given a regular triangulation A, let

Sd((A) := {s E C'(9) : SIT Ei Pd for all triangles T E A},

where Pd is the space of polynomials of degree d, and Q is the union of the
triangles in A. In this paper we focus on the case r = 1 and d > 5. The main
result of the paper is a construction of a basis B := { B}i=, for Sd(A) with
the following properties:

P1) The basis B is local in the sense that for each 1 < i < n, the support of
Bi is contained in star(vi) (see the end of this section) for some vertex vi,

P2) The set B is stable in the sense that there exist constants K, and K 2

dependent only on the smallest angle OA in A such that

n

KliclI. < 11 EciBill < K2111l. (1)
i=1

for all choices of the coefficient vector c = (ci,... , cn).

Bases for Sd((A) satisfying property P1 were constructed in [14] using nodal
techniques, but they fail to satisfy property P2 for triangulations with near
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singular vertices or near degenerate edges, even if the smallest angle in the
triangulation is controlled.

For convenience, we recall the definitions of some of the terminology used
above. Suppose v is a vertex of a triangulation which is connected to v1 , v2, V3

in counter-clockwise order. Then the edge e := (v,V2) is said to be near-
degenerate at v (degenerate at v) provided that the edges (v,vlj and (v,v3)
are near-collinear (collinear). The vertex v is called near-singular (singular)
if there are exactly four near-degenerate (degenerate) edges attached to it.
Given a vertex v of A, star(v) = starl(v) is the set of triangles sharing v,
and start(v) is defined recursively as the union of the stars of the vertices of
star-l (v).

§2. Nodal Determining Sets and Nodal Bases

Suppose s is a spline in S((A), and that v is a point in Q. In this paper
we are interested in certain linear functionals defined on S((A) in terms of
values and derivatives of s at points v in Q. Such functionals are called nodal
functionals. There are three types of nodal functionals of interest here:

1) the value s(v),

2) the directional derivative D's(v), where w is a given vector and m is a
positive integer,

3) the mixed derivative Dm D's(v) at a vertex v of A, where w, and w2

are two noncollinear vectors which point into a common triangle T of A.

Definition 1. A collection M := { Aj}, 1 of nodal functionals is called a
minimal nodal determining set for S((A) provided they form a basis for the
dual space (S'(A))*. If M is such a set, then there exist unique splines
B := {Bj}7=1 in Sdl(A) such that

•i iBj b ij, i~j = 1,... ,n. (2)

We call B a nodal basis for S( (A).

In this paper we will concentrate on nodal functionals which involve
derivatives De along edges e := (vl, V2) of the triangulation A, or perpen-
dicular to such edges. Denoting the Cartesian coordinates of a point v by
(vx, vy), we see that the derivative along the edge e is given by

DeV) := (vM - vx)Dxs(v) + (v" - v"))Dys(v)
V ý V1 + MY 1

while the derivative perpendicular to the edge e is given by

(vY - v')Dxs(v) - (vx - vx)Dys(v)
i-( + M v)2

Note that

D(l,,,2)s(V) = -D(v2,v,)s(v), D(,,V2 ) Ls(v) = -D(v 2 , -ss(v).
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§3. Smoothness Conditions Between Polynomial Pieces

It is well-known how to describe smoothness between polynomials defined on
adjoining triangles in terms of the Bernstein-B1zier coefficients of the two
polynomials. Here we need similar conditions in terms of nodal information.
Suppose T = (V1, v2, v 3 ) and T = (V1, v 2 , 3N are two adjacent triangles with a
common edge e = (V1,V2). We set 01 = V3V 1 V2 , 02 = Lv 3 v 2 v,, 91 = ZV3VlV2,

02 L= / 3 v 2vl. Suppose

V< e,O 0,

e,1 e, 1
V 1 < d-4 < V2

are given points lying in the interior of the edge e.

Lemma 2. Let p, ý be polynomials of degree d > 5 defined on adjoining
triangles T and T as above. Then p and P join together with smoothness C'
across the edge e := (v1, V2) if and only if the difference g = p - P satisfies

g(vi) = Deg(vi) = Dig(vi) = D ~g(vi) = 0,, i = 1, 2, (4)

g (v '°) = 0, i = d,..., ,d -5)
D ,-±g(v ') = O0, i = 1 . ,d - 4,

and

&1D D 2 l,v2 )p(v i) = & D (vlv ) D (vl o,)p (vl V2 ( ,v ) D (vlf3)P(Vl ),6 V V )2 V 3) P ( V l + u D( 6 )

"2D~v2,V)p(v2) = &2D(v2,v 1 )D(V2 ,V3 )p(v 2 ) + a 2 D(V2 ,Vl )D(v 2,Fs3)P(v2 ),

where oi := sin 9i, &i := sin 6i, &i := sin(9i + 9i), i = 1,2.

Proof: We follow the method of proof of the main result in [14]. Concerning
necessity, we first observe that if p and P join with C 1 continuity across e,
then

g(v) = D~g(v) = 0, for all v E e, (7)

where w is any unit vector noncollinear with the edge e. This implies (5)
and the conditions on g, Deg and D,±g in (4). The conditions on the second
derivatives are easily obtained by differentiating the identities (7) along the
edge e and using the fact that

51D(v,,2)p(vl) = 5lD(v1 ,,v)p(v1) + al D(v,, 5 3)p(Vl),

62 D(V2,Vl)p(v 2) = 32D(V2,.3)p(v 2) + o2D(V2,f,3)p(v 2).

To prove sufficiency, suppose that p and P satisfy (4)-(6). Then the
univariate polynomial gle is of degree at most d and satisfies d + 1 homoge-
neous Hermite interpolation conditions on e. Therefore g(v) - 0 for v E e.
This shows that p and P join continuously. We now consider the cross-
derivative q := Deiglj which is a univariate polynomial of degree at most
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d-1. By (4)-(5), q has d-2 zeros vI,v" •,...,V' d 4 ,v2 on e. Moreover, by (6),
Deq(vi) = Deq(v2) = 0, as is easy to check by expressing DDeiLp(vl) as a lin-
ear combination of D2p(vi) and DeD(vlvy)p(vl) and expressing DeDe~iP(vi)
in terms of D2&(v1) and DeD(v1, 3f)P(v1), and similarly for v2. Therefore,
q - 0, and we have shown that p and P join with C 1 -smoothness. El

For a different set of nodal smoothness conditions, see [5].

§4. Construction of a Stable Local Nodal Basis for Sdl(A)

In this section we begin by defining a spanning set AFA of nodal functionals
for (Sd,(A))*. Then we choose an appropriate linearly independent subset
M which forms a basis for (S((A))*. This will involve analysing the linear
dependencies between elements of ArA (i.e., the smoothness conditions). The
corresponding nodal basis determined by the duality conditions (2) will be the
desired stable local basis for SI(A). Given a triangle T = (v1, V2, v3 ), let

__iv1 + jv 2 + kv 3V i V +d , i +j + k =d.

Given an edge e of A, let v '0 and ve,1 be the points defined in (3). We define

CT :=I{ATks= s(vZTk) i+j+k=d, 2 <i,j,k},

E(e) := {Ae'Os = s(v"°) i = 1,...,d - 5}

U {A"' 1 s = e[De s(v"'): i 1,...,d 4},

where [el denotes the length of e.
Given a vertex v in A, suppose the vertices connected to v are v1 , ... , vn in

counterclockwise order (with v, a boundary vertex if v lies on the boundary),
and let TI'] = (v vi,Vi+I), ei = (v,vi), 9i = Zeiei+:, where if v is an interior
vertex, we identify vein = vi, ef+, = ej. Denote by [star (v)I the diameter of
star (v). Let

Di(v) ={A's =star (v)I±i+D]Dis(v): 0 < i + j • 1}

TZ2 (v) :{Aý'Ps- = sn6 star (v)I 2Des(v) i = 1, ... ,n}

u {Aý. s = 1[star (v)12 D,,De+,,s(v) i = 1,... ,n}

if v is an interior vertex, and

lR2(v) := {JAVP8 sinO 1nO Istar)De i =2,... ,n - 1}

U {A'pS = Istar (v)12D is(v) i= 1,n}
U {A%,mS = Ilstar (v)i 2DD, D,+ s(v): i = 1,... ,n- 1}

if v is a boundary vertex. Let

,VA := U CTU U S(e) U U [Di(v) UR2 (v)]

TEA eEA yEA

The Markov inequality implies that for all s c SJ(A) and all A E APA,

IAsJ •5 KlIsill, (8)
for some constant depending only on d and the smallest angle OA in A.
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Lemma 3. The set AfA is a spanning set for (S,/(A))*. Moreover, the only
linear dependencies between elements of AfA are given by

A4,m + Ai'•_,m = sin(Oi + Oi-1 )Ap (9)

for every vertex v and every interior edge ej attached to v.

Proof: Let s c S•L(). If As = 0 for all A E )A, then on each triangle T E A
there are exactly (d+2) homogeneous Hermite interpolation conditions on s,
and it is easy to see that they force s to be zero. It follows that NA is a
spanning set for (Sd (A))*. The second statement follows immediately from
Lemma 2. E

Algorithm 4. (Construction of a stable local nodal basis for S•(A).) Let
{Bi}iL= be the set of splines determined by the duality conditions (2) corre-
sponding to the following set M := { A}[L= of nodal functionals:

1) For each triangle T, choose the (d-4) nodal functionals Aik in CT.

2) For each edge e = (V1, v2), choose the 2d - 9 nodal functionals A"'° and

A3') in S(e).

3) For each vertex v, choose the three nodal functionals A- in 7Di(v).

4) For each vertex v, choose the following nodal functionals in IZ2 (V):

a) one of the functionals AVm corresponding to the first mixed derivative
at v, and

b) all functionals AY p corresponding to the pure second derivatives at
v, with one exception: if v is a nonsingular interior vertex, the func-
tional AV is omitted, where io is chosen such that%oP

Isin(Ojo + Oji0-)I _Ž Isin(Oi + Oi-1)1, for all i = 1,...,n. (10)

Theorem 5. The set M of Algorithm 4 is a minimal nodal determining set
for Sd(AL), and the nodal basis {B 1 ,..., BN} for S)(Azý) defined in (2) is local
and stable, i.e., it satisfies both conditions P1 and P2.

Proof: The fact that M is a basis for (Sd (A))* follows easily from Lemma 3.
To construct a typical basis spline Bj, we set AiBj = 6ij for all i = 1,... ,n.
Then the remaining nodal values ABj, A E Af. \ M are computed from the
smoothness conditions (9). It is easy to see that the support of the resulting
spline is at most the star of a vertex. This shows that P1 is satisfied.

It remains to show that the Bj form a stable basis. This follows from (8)
by a standard argument [12], provided we can show that

IIBjjj. _< K, 1 _< • _ n, (11)

where K is a constant depending only on d and the smallest angle 0A• in AL.
This clearly holds if

IABj _< K, for all A /EA,
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for a similar constant K. By construction, lABj! < 1 for all A E M. Since
Afr/, \ M C UI, IZ2(v), let us take an arbitrary vertex v of A and notice that
if A E 7R2 (v), then ABj can be nonzero only if the corresponding Aj lies in

TC2 (v). Therefore, it will be sufficient to show that ABjjl < K for all j such
that Aj E 7I2(v) and all A E 7Z2(v) \ M. We distinguish four cases.

Case 1: (v is a boundary vertex.) In this case, 7Z2(v) \ A4 = {A',m,:
i = 1,.. n - 1, i 7 il}, where A/ is the functional included in M in step

4a) of Algorithm 4. Without loss of generality we assume that ii - 1. For
any s E Sd'(A), (9) implies

Av,m,,s = -A',,,,s + 0'2 Av,

3~,ms = Av,ms - 0aiA',p ±U 3Av, S

n-1
)n ,ms = (--1)flns +-lo

i=2

where we set
ai := sin(Oi + Oi-1).

If we take s to be the basis spline Bj corresponding to a Aj E 1Z2 (v), then
all but one of the values on the right-hand side of the expression for A.'mBj
vanishes, and thus

IAmBjl <- jAjBjl = 1, i = 2,... ,n - 1,

which proves the assertion.

Case 2: (v is an interior vertex with n :ý 4.) In this case, 1Z2(v) \ M
{A'm 1,...,n, i 5 il} U {AY,}. For Ayms, i 1,...,n, i $ il, theZ{ tom : i ,., , 1,U i~ o

same calculation as in Case 1 applies: we start from Aý',ms and calculate A',ms
consecutively counterclockwise until A)'oi,ms, and then also clockwise until
A2,,m s. For AY', s, we have by (9),

A So=pS =O7l(AýomS + A'o~i,ms). (12)

Therefore, our claim will be established if we show that

10U1 1 = I sin-l(0jo + j0o-1) 1 < K 3  if n # 4, (13)

where K 3 is a constant dependent only on 0 A. This is obvious for n = 3.
Assuming n > 5, we have I01 + 02 + 03 + 04 - 27rI Ž_ 0zý. Hence,

I0io + Oio-i - 71 > max{I0 + 02 - 7rl, 103 + 04 - 71l} > OA/2,

and (13) follows.
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Case 3: (v is a singular vertex.) In this case, RZ2 (v)\\M = {f Am : i = 2,3,4}
(where we assume for simplicity that ii = 1). Since al = ... 4 = 0 for a
singular vertex, (9) now reduces to

Ams + A•-i,ms = 0, i = 1,2,3,4.

Therefore,
A 5, = (--1)'+lAv,ms, i = 2,3,4,

and the assertion follows.

Case 4: (v is a nonsingular interior vertex with n = 4.) We proceed as in
Case 2, but calculate AVo, s differently. At first glance it may seem that (10)
does not guarantee stability since ]j 0oi may be arbitrary small (in the case
of near-singularity), while Ayops is to be computed from (12). However, the
complete system of equations (9) for 7Z2(v) is

uiA',ps = A',ms + A•_mS, i = 1,2,3,4.

Taking the sum with alternating signs, we get

4

S(-1)~iaAV, s = 0,
i=1

and hence

IAv ,osl J S IAYsl < 1

for every s = Bj, with Aj E 1 2 (v). This completes the proof of (11), and the
theorem has been established. E

§5. Stability vs. LLI

We recall (cf. [2,4,6,8,9]) that a set B of basis splines in Sd(A) is called locally
linearly independent (LLI) provided that for every T C A, the splines {Bi : i E

ET} are linearly independent on T, where

ET := {i: T C suppBj}. (14)

A star-supported LLI nodal basis was constructed for SdI(A) in [4]. We now
establish the following surprising result.

Theorem 6. For d > 5, it is impossible to construct a basis for S1/(A) which
satisfies both conditions P2 and (14) simultaneously.

Proof: Suppose {B1 ,..., Bn} is a locally linearly independent basis for S1 (A)
on a triangulation A which contains an interior near-singular vertex. Suppose
v is connected to v 1,.. • , v4 in counterclockwise order, and let ej be the edge
(v, vi), T, the triangle (vvi+,, v), and Oi the angle between ej and ei+l.
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Suppose that none of ej is degenerate at v. For each 1 < j < 4, let sj be the
unique spline in SJ (A) such that

AVmsj = r5ij, i,j = 1,2,3,4,

Asj = 0, for all A C- AA \ 1Z 2 (v)

Clearly,
supp sj = Tj- 1 UTj U Tj+I,

and we can write (see [2,9])

Sj Zcjl Bi,
iE~j

where Ij := {i supp Bi C supp sj}. We now consider the spline

S= -81 + S2 - 83 + 84 = -+ l]B ÷ e
2 Bi -E E C1 Bi + e4] Bj

iEIi iE12 iEla iEI 4

- S aiBi.
iEIiUI 2UI1UI 4

Using the smoothness conditions (9), it is easy to see that

i A,=p0, Am =(-1)', i 1,2,3,4,

A9 = 0, for all A C A/',, \ 7Z 2(v).

and thus IAIIK :_ K4 , where K 4 depends only on d. If the basis {BI,..., B,•}
satisfies P2, we get

Ilall. -• K-1IIý1lK < K 4 /K 1 .

Moreover, since AvmBi 5 0 only if T1 U T2 U T3 C supp Bi, we have

1 = , = aiA',mBi • #1 211al100 max IA',mBil,

with 12 := {i: suppBi = T, UT 2 U T3}. Clearly, #12 < 3 (d+2) and hence

there exists io E i2 such that

IAv,mBioI _ K 5 > 0,

where K 5 depends only on 0A. However, AynBio = 0, so that by (9) we have

IAv, Bi 0I = 1 K 52ABo -- 1 sin(01 + 02)11,go 2 _ 1 sin(O1 + 02) 1

which is unbounded as 01 + 02 -+ 7r. In view of the Markov inequality, it

follows that IjBj 0II• is unbounded. But then the basis {B 1 ,..., B,} cannot
be stable. M
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§6. Remarks

Remark 1. Stable local bases are important for both theoretical and practical
purposes. For example, it can be shown (see [12]) that if a spline space has
such a basis, then it has full approximation power. Applications where stable
bases are useful include data fitting and the numerical solution of boundary-
value problems.

Remark 2. For d > 5, stable local bases for certain superspline subspaces of
Si (A), can be constructed using classical finite elements, see [15]. However,
it is also important to have such bases for the full spaces S (A), since in
contrast to supersplines, they are nested, i.e., S(A 1) 9 Sdl(A 2) whenever
A 2 is a refinement of A,. This is important for multiresolution applications,
see [3,13].

Remark 3. Algorithm 4 is a modification of the algorithm used in [14] to
construct a star-supported basis for S (A). The only change is in the choice
of nodal functionals in step 4b) where io was taken to be any index such that
eio is nondegenerate at v. To get stability, we have to choose i0 more carefully.
The basis constructed in Algorithm 4 is not locally linearly independent. To
get an LLI basis, step 4) has to be modified in a different way, see [4].

Remark 4. Star-supported bases were constructed for general spline spaces
Sd(A) for d > 4r+1 in [1], and for d > 3r+2 in [10,11]. The constructions were
based on Bernstein-B6zier techniques, and are not stable for triangulations
that contain near-degenerate edges and/or near-singular vertices.

Remark 5. In [7] we use Bernstein-B~zier techniques to construct stable local
bases for general spline spaces Sr(A) and their superspline subspaces for all
d > 3r + 2. In a related work [6], we also used Bernstein-B1zier techniques
to construct locally linearly independent bases for the same range of spline
spaces and superspline spaces. For more on LLI spaces, including applications
to almost interpolation, see [2,4,6,8,9].

Remark 6. Following the arguments in [7], it is easy to show that a natural
renorming of our stable bases is Lp-stable for all p E [1, co].

Acknowledgments. The second author was supported in part by the Na-
tional Science Foundation under grant DMS-9803340 and by the Army Re-
search Office under grant DAAD-19-99-1-0160.
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