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Cubic Spline Interpolation on

Nested Polygon Triangulations

Oleg Davydov, Giinther Niirnberger, and Frank Zeilfelder

Abstract. We develop an algorithm for constructing Lagrange and Her-
mite interpolation sets for spaces of cubic Cl-splines on general classes of
triangulations built up of nested polygons whose vertices are connected
by line segments. Additional assumptions on the triangulation are signifi-
cantly reduced compared to the special class given in [4]. Simultaneously,
we have to determine the dimension of these spaces, which is not known
in general. We also discuss the numerical aspects of the method.

§1. Introduction

In contrast to univariate splines, it is a non-trivial problem to construct even
one single set of interpolation points for bivariate spline spaces. Such interpo-
lation sets for Sr(A), the space of splines of degree q and smoothness r, were
constructed for crosscut-partitions A (see the survey [9] and the references
therein). For general triangulations A, interpolation sets were constructed for
S'l(a), q > 4 in [3].

The case q = 3 is much more complicated given that not even the dimen-
sion of SI(A) is known for arbitrary triangulations A. It is an open question
whether the dimension of S3 (A) is equal to Schumaker's lower bound [12]. The
aim of this paper is to investigate interpolation by S3 (A) for general classes of
triangulations A consisting of nested polygons whose vertices are connected
by line segments. Following a general principle of locally choosing interpo-
lation points for S (A) by passing from triangle to triangle, we describe an
inductive method for constructing point sets that admit unique Lagrange (re-
spectively Hermite) interpolation by S3(A) under certain assumptions on A.
Moreover, we prove that the dimension of these spaces is equal to Schumaker's
lower bound.

In this way we obtain a class of triangulations A which is significantly
larger than the special class described in [4]. Moreover, the methods of proof
in this paper are different from those in [4]. It is important to note that
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triangulations of this type can be constructed starting from any given points
in the plane, see [11].

The numerical examples (with up to 100,000 interpolation points) show
that in order to obtain good approximations, it is desirable to subdivide some
of the triangles. Our method of constructing interpolation points also works
for these modified triangulations.

We note that our interpolation method can be used for the construction
of smooth surfaces without involving any derivative data. For scattered data
fitting, the needed Lagrange data are approximately computed by local meth-
ods. In contrast to the finite element methods for cubic splines, we do not
need to subdivide all triangles by a Clough-Tocher split or use derivatives.

§2. Preliminaries

Let A be a regular triangulation of a simply connected polygonal domain
Q in R 2. We denote by S3(/A) = {s E C1 (f) : SIT E H 3, T E A} the
space of bivariate splines of degree 3 and smoothness 1 (with respect to A).
Here 113 = span {xvy" : v, >I Ž 0, v + it < 3} denotes the space of bivariate
polynomials of total degree 3.

We investigate the following interpolation problem. Construct a set
.Zl... , ZN} in Q, where N = dimS1 = (A), such that for each function f E
CQ•), a unique spline s E $31(A,) exists such that s(zi) = f(zi), i = 1,...,N.
Such a set {zl,... , ZN} is called a Lagrange interpolation set for $31(AL). If also
partial derivatives of f are involved, then we speak of a Hermite interpolation
set for S(A).

In contrast to [4], we will use Bernstein-B zier techniques [2,5]. Given a
spline s E S$3(A), we consider the following representation of the polynomial
pieces p = sIT E 113 on the triangle T E A with vertices v 1, V2, v3 ,

pT, (Diix, y)) (x,y)V(x,y), (x,y) E T, (1)
v+p+a=3

where (P E 111, I = 1,2,3, is uniquely defined by DI(vk) = bk,l, k = 1,2,3.
This representation of p is called the Bernstein-B4zier representation of p,

the real numbers a[T],, are called the Bernstein-B~zier coefficients of p, and
4ý1(x,y), I = 1,2,3, are the barycentric coordinates (w.r.t. T) of (x,y) E T.

Definition 1. A set A C {(vp ,a,T) : v + p + a = 3, T E A} is called an

admissible set for S3 (A) if for every choice of coefficients a•,•ar, (v, 1i, o, T) E A,
a unique spline s E S3 (A) exists with these coefficients in the above Bernstein-
B1zier representation.

The above Bernstein-B6zier form can be used to express smoothness con-
ditions of polynomial pieces on adjacent triangles T1, T2 with vertices V1 , V2, V3,
respectively V1, V2, V4 (cf. [2,5]).

Theorem 2. Let s be a piecewise cubic polynomial function defined on T 1 U
T2. Then s E SI({T1,T 2}) iff[T,],= a,,o[Ti I + f = 3, and a[T2]

z'JiO a.,,i,O, L'4L,1I

[TI 1  () IN IT,) +aT1 3()V+ l, , ' 1A' D (V4) +[ aV,/A+ l'04 2(V4) +[ a v,41,l 3( 4), v] +• p. 2.
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For later use, we also mention here the following relations between the
Bernstein-B6zier coefficients of a cubic polynomial p in the representation (1)
and its partial derivatives at v, in direction of a unit vector parallel to the
edge e = [v1,v 2 ], denoted by a

[T] Tp(v), TIT] = p(v 1) + 10p(vi)
a3,0,0  a 2,1, 0 + 3 - IV -v2112,

[T] 20p(vl) 1- + 10 2p(vi)IViV 2I2, (2)a 1,2,0 - 3 -- 5-e--- 6 Oe2

[T] -a](a[ , [T] ,) ,2p(Vl) [T], - 2a[T],0 + a[T],,9p(Vl) 3'(a2,1,0 - 3,0,0 12(l ia,2,0 2,1, ÷ 3,0,0)
Oe - IlV1- V2112 'IV e -1 - V2 2

§3. Main Results

In this section, we state our main results on S3 (A), where A consists of
nested polygons whose vertices are connected by line segments. We first define
this class of triangulations. Then, we determine the dimension and construct
interpolation sets for the corresponding spline space. Moreover, we show that
this dimension is equal to Schumaker's lower bound [12]. Finally, we discuss
a property of A which is essential for the local construction of interpolation
points.

First, we describe triangulations of nested polygons and decompose the
domain into finitely many subsets needed in our construction of interpolation
points.

Triangulations of nested polygons. We consider the following general type
of triangulation A. Let Po, P1 , ... , Pk be a sequence of closed simple polygonal
lines, and let Q. be the closed (not necessarily convex) bounded polygon with
boundary P,. Suppose that the polygons , are nested, i.e., Q-l C Q,,
p = 0,... , k. The vertices of A are the vertices of PM, y 0 . ... , k, and
one vertex inside P 0. The edges of A are the edges of P,, ft - 0,.. . , k, and
additional line segments connecting the vertices of P, with the vertices of

PA+I, A = 0,... , k - 1. The resulting triangulation A of Q := Qk does not
have vertices in the interior of Q+, \ , /• = 0, ... , k - 1, and does not have
edges connecting two vertices of P,, other than the edges of P,,, see Figure 1.
Decomposition of the domain. We decompose the domain i into finitely
many sets V0 C V1 C ... C Vm -= Q, where each set Vi, is the union of closed
triangles of A, i = 0, ... , m. Let V0 be an arbitrary closed triangle of A in
Q0. We define the sets V1 C ... C V,,, by induction. Assuming Vi-I is defined,
we choose a vertex vi of A such that there exists at least one triangle of A
with vertex vi and a common edge with Vi- 1 . Let To, ,... ,Ti,,, ni >_ 1,
be all such triangles. We set Vi = Vi-1 U Ti,1 U ... U Ti,ni, and denote by
Aj = {T E A : T C V,} the subtriangulation which corresponds to the set Vi.

The vertices vi, i = 1, ... , m, are chosen as follows. After choosing V0 to
be an arbitrary closed triangle of A in S20, we pass through the vertices of PO
in clockwise order by applying the above rule. (It is clear that the choice of
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Fig. 1. Triangulation of nested polygons.

these vertices is unique after fixing the first vertex.) Now, we assume that we
have passed through the vertices of P,,- 1 . We fix a vertex w,, of P,, that is
connected with at least two vertices of P,+i. Then w.r.t. clockwise order, we
choose the first vertex of P. greater than w1, which is connected with at least
two vertices of P,,-,. Then we pass through the vertices of P,1 in clockwise
order until wJ-, and pass through the vertices of P,, in anticlockwise order
until w+ by applying the above rule. (Here w+ denotes the vertex next to
w11 in clockwise order and w; denotes the vertex next to w•, in anticlockwise
order.) Finally, we choose the vertex w1,. (It is clear that after fixing w,,, the
choice of the vertices on P, is unique.)

The construction of an admissible set for Sl(A) and the choice of inter-
polation points depend on the following properties of the triangulation A.

Definition 3. (1) An interior edge e with vertex v of the triangulation A is
called degenerate at v if the edges with vertex v adjacent to e lie on a line.
(2) An interior vertex v of A is called singular if v is a vertex of exactly four
edges and these edges lie on two lines. (3) An interior vertex v of A on the
boundary of a given subtriangulation A' of A is called semi-singular of type
1 w.r.t. A' if exactly one edge with endpoint v is not contained in A' and
this edge is degenerate at v. (4) An interior vertex v of A on the boundary
of a given subtriangulation A' of A is called semi-singular of type 2 w.r.t. A'
if exactly two edges with endpoint v are not contained in A' and these edges
are degenerate at v. (5) A vertex v of A is called semi-singular w.r.t. A' if v
satisfies (3) or (4).

In the following, we construct an admissible set and interpolation sets for
S•(A), where A is a nested-polygon triangulation.

Construction of an admissible set. First, we choose A0 = {(v, IL, a, Vo)
vq-iz~a -= 3} and then, proceeding by induction, we successively add admissi-
ble points on Vi \Vi- 1 , i = 1,... ,m. Assuming that an admissible set Ai- 1 on
Vi- 1 has been constructed, we choose admissible points on Vi \ Vi-1 as follows.
By the above decomposition of Q, Vi \ V1-1 is the union of consecutive trian-
gles Ti, 1,...,Ti,.i with vertex vi and common edges with Vi- 1. We denote
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the consecutive endpoints of these edges by vi,o, vi,; ... Vi,ni, and the piece-
wise polynomials in the representation (1) on Tij by pj E 113, j = 1, ... ni,
where the vertices of Tij are ordered as follows: vi, vij, vi,j+l. Furthermore,
we denote by eij the edges [vij,,vi], i = 0,... ,n i .

We need the following properties of the subtriangulation Ai = {T E A
T C Vi} at the vertices vi,o, .. , Vi,n:

(a) eij is non-degenerate at vij,

(b) vij is semi-singular w.r.t. AZ. (This latter property is only relevant if
vij lies on the boundary of Aj, i.e., for j E {0,ni}.)

For j E {1, ... , ni - 1}, we set cij = 1 if (a) holds, and cij = 0 otherwise. For
j E {0, ni}, we set cij = 1 if both (a) and (b) hold, and cij = 0 otherwise.
Moreover, we set ci = E'o cij, and assume ci !_ 3, i = 1, . . . , n.

Now, we construct the following admissible points on Vi \ Vi- 1 . If ci = 3,
then no point is chosen. If ci = 2, then we choose (3, 0, 0, Ti,1). If ci = 1, then
we choose (3,0,0, Ti,1 ) and (2,0, 1, Ti,), where eij is an edge with cij = 0.
If ci = 0, then we choose (3,0, 0, Ti,1 ),(2,0,1,Ti,1 ) and (2,1, 0, Ti,l). The
admissible set Ai on 1V is obtained by adding these points to Ai- 1.

Construction of interpolation sets. We choose interpolation points in VO
and then in Vi \ V'- 1 , i = 1,... ,m, successively. In the first step, we choose 10
different points in V0 (respectively 10 Hermite interpolation conditions) which
admit unique Lagrange interpolation (respectively Hermite interpolation) by
the space H3. For example, for Lagrange interpolation, we may choose four
parallel line segments 1, in VO and v different points on each l,, v- = 1, 2,3,4.
Assuming that the interpolation points in Vj- 1 have already been chosen, we
proceed to V1 \ Vj- 1 as follows.

For Lagrange interpolation, we choose the following points in V1 \ Vi-1.
If ci = 3, then no point is chosen. If ci = 2, then we choose vi. If ci = 1, then
we choose vi and one further point on some edge eij with cij = 0. If ci = 0,
then we choose vi and two further points on two different edges.

For Hermite interpolation, we require the following interpolation condi-
tions for s E S3 (A) at the vertex vi. If ci = 3, then no interpolation condition
is required at vi. If ci = 2, then we require s(vi) = f(vi). If ci = 1, then
we require s(vi) = f(vi) and 0 (vi) = '(vi), where eij is some edge

with cij = 0. If ci = 0, then we require s(vi) = f(vi), os2- (vi) = -(vi) and

By the above construction, we obtain a set of points for Lagrange inter-
polation respectively a set of Hermite interpolation conditions.

Theorem 4. Let A be a triangulation of nested polygons. If for all i E
{1,... , m}, c < 3 and no vertex vi is simultanously semi-singular (of type
2) w.r.t A/ and non-singular, then a unique spline in S(/(A) exists which
satisfies the above Lagrange (respectively Hermite) interpolation conditions.
In particular, the total number of interpolation conditions is equal to the
dimension of S3(A/k).
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Proof: First, we prove that the set constructed above is an admissible set
for S3(A). To this end, we show by induction that Ai is an admissible set for

1(,,)Jz• { = {sIA, : s C S3(A)}. This is clear for i = 0. Now, we assume that
A1i- 1 is an admissible set for S3(A)jAj,_, where i E {1,. .. ,m}, and consider
Vi. For simplicity, we omit here the index i for vi, vij, ei~j,Pij, Tij and ni.
It follows from the induction hypothesis and Theorem 2 that the coefficients

v,3-v-a,a, a = 0,...,3- v, v = 0,1, ofp j E H3, j = 1,...,n, on Tj, are
uniquely determined. Moreover, if cij 1 for some j C {1,... ,n - 1}, then
it follows from Theorem 2 that the coefficient a[T0, is uniquely determined.

2,0,1t i

In the following, we show that if ci, 0 = 1, then the coefficient a2,1, is

uniquely determined. Let us consider the case where v0 is semi-singular of
type 2 w.r.t. AL. (The case that vo is semi-singular of type 1 w.r.t. A1 is
analogous.) We denote by t C- A, 1 = 1,...,3, the triangles with vertex v0

not contained in A1 in anticlockwise order, and by F1 the common edge of t,
and Tl+1 , 1 = 1,2. Since T3 has a common edge with Ai 1 l, it follows from
Theorem 2 that the coefficient a"l,1,1

Theorm 2f tt3 C -13 on t is uniquely determined.

Moreover, since e2 and el are degenerate at v0 , the coefficients a,1,1 C13

on TI, 1 = 1,2, are uniquely determined. Since e0 is non-degenerate at v 0 , it
follows from Theorem 2 that the coefficient a[T2,1

a2,1,0 is uniqeydtrie.W
note that since A is a nested-polygon triangulation, at least two triangles with
vertex vo not contained in Ai exist. Therefore, if ci,o = 0, then the coefficient

a 2,1,0 is not yet determined.

Analogously as above, it can be shown that the coefficient a[T , is uni-
quely determined if ci,n = 1. Otherwise, this coefficient is not yet determined.

Now, we consider the vertex v. The arguments below will show that we
may assume that v is an interior point of A. We denote by Tn+i C A, 1 =
1,... ,r, r > 3, the triangles with vertex v not contained in As in anticlock-
wise order. Moreover, let the piecewise polynomials Pn+1 C 1-13, 1 = 1,..., r,
on Tn+i in the representation (1) be given such that the first barycentric co-
ordinate always corresponds to v. The above arguments show that exactly
ci < 3 coefficients of the set C1 = f a = 0,. . .,3 -[T
2, 3, 1 = 1, . . . , n + r} are uniquely determined. On the other hand, we con-

struct 3 - ci additional admissible points from C1 on Vi \ Vi-1. Now, it follows
from the Cl-property at v and Theorem 2 that all coefficients from C1 are
uniquely determined. By our method of passing through the vertices of A,
v is not semi-singular of type 1 w.r.t. A1 . In particular, if v = w,, for some
p C {0, ... , k}. Moreover, by assumption v can be semi-singular of type 2
w.r.t. Ai only if v is singular. In this case, we have r = 3, and it follows
from Theorem 3.3 in [13] that the coefficient a[T311

Otherwise, if r > 4, then for some I E 1,.... , r - 1} one common edge of
T.+, and T±+,+, is non-degenerate at v, and we can also proceed with our
arguments.

Since all relevant differentiability conditions at the edges with endpoint
v, respectively vj, were involved, the above shows that Ai is an admissible set
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for S3(A)[5j. Thus, the set Am is an admissible set for S3(A).
Therefore, the cardinality of Am is equal to the dimension of S31(A). By

construction, it is evident that the number of Lagrange interpolation points,
respectively the number of Hermite interpolation conditions coincides with
this cardinality.

By an inductive argument, it follows from (2) that the Hermite inter-
polation conditions at v determine the Bernstein-B1zier coefficients of the
admissible points chosen on 17 \ 1V ,-1. Analogously, the Lagrange interpola-
tion conditions uniquely determine the interpolating spline on the edges of
Vi \ Vi-1. Therefore, the interpolating spline is uniquely determined on all of
Vi \ Vi-1. This completes the proof of Theorem 4. Ei

For arbitrary triangulations, Schumaker [12] gave the following lower
bound L(A) for the dimension of S](A),

L(A) = 3VB(A) + 2Vs(A) + a(A) + 1. (3)

Here, VB(A) is the number of boundary vertices of A, VI(A) is the number
of interior vertices of A and o-(A) is the number of singular vertices of A. For
bounds on the dimension of bivariate spline spaces see also Manni [6].

Theorem 5. If a triangulation A of nested polygons satisfies the hypotheses
of Theorem 4, then the dimension of S3(A) is equal to L(A).

Proof. We have to show that the cardinality of Am is equal to L(A). We
prove this by induction. We set S(A0 ) = 0 and for i E {1,.... m}, we denote
by S(Ai) the set of boundary vertices w of Ai such that w = vi,o and cjo = 1
(respectively w = vl,,, and cl,n, = 1) for some 1 E {1, ... , i}. Moreover, let
&j be the cardinality of S(Aj) and ai be the cardinality of Ai. We will show
that

L(Ai) = ai+S&j, i =O,..., M. (4)

This is evident for i = 0. We assume that L(Ai- 1 ) = ai- 1 +&-i1 for some i E
{1,.. .,m} and consider Vi. We have VB(Aj) = VB(Ai- 1 ) - ni + 2, V1 (Ai) =

Vs(A~i-) + ni - 1, a(Ai) = a(Aj- 1 ) + -yi, where -yj is the number of singular
vertices from the set {vi: j -= 1,... , ni - 1}. Since ai = ai- 1 + 3 - ci,
it follows from the induction hypothesis and some elementary computations
that

L(Az) = ai + &-1 + ci +• yi - ni + 1.

By our method of passing through the vertices of A, it is evident that if
vi,o = vi-1 E S(An), then vi,o 0 S(Ai- 1). In the following, we show that if
vi,n, E S(A/), then vi,n ý S(Aj- 1 ). First, let us assume that vi,7 ,1 =vi,o

for some 1 E {1,. . . ,i - 1}. If vi,ni is semi-singular of type 2 w.r.t. Ai, then
at least three edges of A not contained in A! are attached to v1,0. Hence,
c1,O = 0. If vi,ni is semi-singular of type 1 w.r.t. Ai, then the edge ei,ni is
non-degenerate at vini, since ci,ni = 1. Therefore, v!,0 is not semi-singular of
type 2 w.r.t. Al. Again, cj,0 = 0 holds. The remaining case vi,ni = vi-l,ni-1,
where ni = 1, follows by the same arguments.
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Now, we show for j E {1,... , ni - 1} that every non-singular vertex vij

such that eij is degenerate at vij lies in S(Ai_1 ). First, we consider the case

j = 1. Set vi, = vi, and let e0 be the edge that connects vi,0 and vi, 1 . We
have to consider two cases.

Case 1. (The vertices vi, and Vi-2 are connected by an edge e.) If eO is
non-degenerate at vi, then ci1 l,nii = 1. (In this case vi, is semi-singular of

type 1 w.r.t. A/i 1 .) Otherwise, since vi,1 is non-singular, e is non-degenerate
at vi, 1. Thus, ci-2,,_ 2 , = 1. (In this case vi,1 is semi-singular of type 2 w.r.t.

Ai_ 2.) We note that vi, is not semi-singular w.r.t. Ai,+i, since at least three
edges of A not contained in Ai,+1 are attached to vi2,.

Case 2. (The vertices vii and vi- 2 are not connected by an edge.) If jo is
non-degenerate at vi, then we also have ci-,,ýj_, = 1. (In this case vi, 1 is

semi-singular of type 1 w.r.t. Ai_ 1.) We note that vi, is not semi-singular
w.r.t. Ai 1+i, since e0 is non-degenerate at v, 1 . Otherwise, let e be the edge

that connects vi, with vi,+l. Since vi, is non-singular, e is non-degenerate
at vi, 1 . Thus, ci 1+i,o = 1. (In this case vi,1 is semi-singular of type 2 w.r.t.
Ai,•+.) We note that in this case vi,1 is semi-singular of type 1 w.r.t. Ai_ 1 ,
but ei-ln_1 = 0.

Now, we consider the remaining case j E {2,. .. , ni - 1}. Set vi, = vij

and let e be the edge that connects vij with vi,+l. Since vij is non-singular,
it follows that vij is not semi-singular of type 2 w.r.t. to Ai,. Therefore, e is
non-degenerate at vij. Hence, cij+,,o = 1. (In this case vij is semi-singular
of type 1 w.r.t. Aij+ 1 .) We note that in the case j E {2,...,ni - 1}, by
our method of passing through the vertices of A, the value cij-1,nj,_ is not

influenced by the geometrical properties of A at vij.

The above proof now implies &j = &j-1 + ci + -yj - ni + 1, and therefore,
(4) holds. Since ,m = 0, we get L(A) = am. This proves the theorem. Li

In Theorem 4 we assume that for all i C {1,. .. , m}, no vertex vi is
simultaneously semi-singular (of type 2) w.r.t. Ai and non-singular. In the
following, we show that this assumption is essential for the local construction
of interpolation points.

Example 6. Let v = vi = (0, 0), V5=VO=ViO=(77,0), Y <0, v1 =vi,1 =

(T, MT), T < 0, m > 0, v 2 = vi, 2 = (0, 6), 6 < 0, and set v3 = (a, 0), o >

0, V4 = (0, i3), /3 > 0. Let v be connected with v3 and v4 and v,- 1 be connected
with vj, 1 = 1, ... , 5. Then v is simultaneously semi-singular (of type 2) w.r.t.
Ai and non-singular. Furthermore, we denote by T1 the triangle with vertices

v, v- 1,vi and by pi E H3 the polynomial pieces on T1, I = 1,... 5, in the rep-

resentation (1). We consider the set C2 = '[T = 0,..., 3 -

1,..., 3, 1 = 1,..., 5}. For Cl-splines, it follows from Theorem 3.3 in [13] that
each subset of C2 that uniquely determines all coefficients of C2 has cardinality

8 and contains the coefficients a[Tl,0 4
1,0,2' - ,.B h proof of Theorem 4,
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the coefficients a[Til a IT2]

1,2-_ a 0,1,2, and al,2-_, a = 1,2, are uniquely
determined. If eil is non-degenerate at vl, then in addition a2 ,0 ,1 is uniquely
determined. Otherwise, this coefficient is not determined. Hence, if ei,1 is non-
degenerate at vl, then we have to choose exactly one additional coefficient to
determine all coefficients of C2 , and otherwise, we have to choose exactly two
additional coefficients. We claim that in the latter case every choice of exactly
two additional coefficients from the set {a], aIT [T"]O, aIT1, a[Tý1]1 fails to
determine all coefficients of C2.

Proof: Suppose that ei, is degenerate at v, and choose, for example, a[T1]
anda For simplicity, we set a[ T[T3] [T3] [T4]2,0,1. ai w 2 , 1,0 , a 2 = a 3 ,0,0 , a 3 = a 2 ,0 ,1 , a4 -

[T4 1 [T4] [T3 1
a1 ,1,1, a 5 = a 2,1,0 , a 6 = a1,,,1 , and assume that the remaining coefficients in
C2 are zero. By Theorem 2,

a3-=(T--/ +1)a2, a4=(1-- )a 3 , a,= -)a2 + 6a 3 ,

a6 (1 )a5 +- 6a4, a5 = (1 - -c~ 0 = ((--T)( M + +)- 1)al +L -- a6,mT- '7 1
k -3 J2 e

Eliminating aj, j E {3,4,5}, yields a, = (1 + 6`-)a2, a 6 = (1- •)(1 +
6(--Y)a2. By some elementary computations, we obtain for the determinant
D°o'rthe corresponding system

D = (--1)(r(my + 6) _- 6Y)
2

M7-672

and it is easy to verify that D = 0 iff ei,1 is degenerate at vj. Other choices ofexactly two additional coefficients from the set ja[T11 ] a[T ,] a[T2]e l3,0,0, a 2 ,1 ,0 , a 2, 0 ,1 , 2 ,0 ,1 }
can be examined in the same way, which proves our claim. El

Note that if eij is non-degenerate at vi, then every choice of exactly one
additional coefficient in the set {a[T3] [2',0 ,0",} determines all coefficients
in C2 .

We finally discuss some numerical aspects of our scheme. A method for
constructing nested polygon triangulations A of given points in the plane
which satisfy the conditions of Theorem 4 was developed in [11]. Our numer-
ical tests show that in order to obtain good approximations, it is necessary to
subdivide some of the triangles (for details see [10,11]). Meanwhile, we have
computed such examples with a high number of interpolation conditions. We
only mention here that, for example, Lagrange respectively Hermite interpo-
lation of Franke's test function by cubic Cl-splines with 118,822 interpolation
conditions yields an error of 4.66902 * 10-6 in the uniform norm.
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