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Interpolating Polynomial Macro-Elements
with Tension Properties

Paolo Costantini and Carla Manni

Abstract. In this paper we present the construction of nine-parameter
polynomial macro elements, based on the classical Powell-Sabin split,
which can be connected to form a C1 surface. Variable degrees, which
act as independent tension parameters, are associated with any vertex of
the triangulation, i.e. to any interpolation point.

§1. Introduction

Among the several approaches for avoiding extraneous inflection points in
interpolating functions, the so called tension methods are the oldest and prob-
ably the most famous ones. Basically they consist of Ck, k > 1, piecewise
functions depending on a set of parameters which are selected in a local or
global way to control the shape of the interpolants, stretching their patches
between data points.

Piecewise polynomial splines with variable degrees have turned out to be a
useful alternative to classical (exponential or rational) tension methods, and
have been successfully applied both in free-form design and in constrained
interpolation of spatial data [1]. On the other hand, a limited number of
methods for constrained interpolation of bivariate scattered data are at present
available, and very few of them offer the possibility of controlling the shape
via tension parameters (see for example [2,3] and references quoted therein).

Let a set of scattered points (xi, yi, fi), i = 0, 1,... , N, be given, and
suppose they have been associated with a proper triangulation T. We are
interested in local methods where the polynomial pieces of a spline are de-
termined one triangle at time using only local data. Such methods are called
macro-element methods. The aim of the paper is to describe a new class of
variable degree polynomial triangular macro-elements, and to show their ten-
sion properties. These polynomial patches, which are based on the classical
Powell-Sabin split of a triangle, can be connected to form a C1 interpolating
function.
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Typically, the main drawback of macro-element methods is in the strong
influence of the triangulation on the shape of the interpolating surface, and,
as far as we know, it is still not clear how to construct a "good" triangulation.
Given that any interpolating scheme based on triangular macro-elements can-
not be completely independent of the triangulation, we can nevertheless try
to reduce this dependence. From this point of view, the main advantage over
existing methods is in the fact that we have a variable degree associated to
each vertex of the triangulation; therefore the modification in the shape of
the interpolant is similar for all the patches around the same common vertex
(see Fig. 8 right). In other words, although constructed over T, the tension
parameters are more related to the interpolation points than to the edges of
the adopted triangulation.

It is worthwhile to anticipate that the possibly high degrees we use for our
construction act only as tension parameters, and do not modify the basic struc-
ture of the macro-element. In other words, we always use a nine-parameter
macro-element, and the computational complexity is almost independent of
the size of the degrees used.

The scheme, being local, requires that the gradients are also known at the
vertices of the triangulation. If this information is unavailable, gradients can
be recovered from the data points. In the presented numerical test, gradients
have been computed from the data according to the classical least square
strategy.

The paper is divided into six sections. In the next section we introduce
some notations. Sections 3 and 4 are devoted to the construction of the control
points defining the macro-element, whose properties are briefly discussed in
Section 5. We end with Section 6 where a graphical example is presented.

§2. Notation and Preliminaries

In this section we introduce some notation. To aid in comprehension, we
notice that points and vectors in 1R2 and in ]R 3 have been denoted by bold-
faced characters unless classical notations (as for gradients) have been used.
As usual, we describe the polynomial macro-element in terms of its Bernstein-
B~zier control points. Let Pr, r = 1, 2, 3, be three non-collinear points in ]R2 ,
and let T denote the triangle they form. An n-degree Bernstein polynomial
has the form

n! k

b(x,y;n) = b(u,v,w;n) i~j!k! lijk UiVjWk,
i+j+k=n

where, setting P = [x, )]T E 1R2 , u = u(xy), v = v(x, y), w = w(x, y), are
the barycentric coordinates of P with respect to the vertices of T, that is

P=uPI+vP 2 +wP 3 ; u+v+w=l,

and lijk, i + j + k = n, are the Bernstein ordinates of b(., ., .; n).
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Fig. 1. Powell-Sabin split of a triangle.

Setting x = x(u, v, w), y = y(u, v, w), the points in R 3

Lijk := ,(_' 7i,j,k>O, i+j+k=n,
L lijk

are called control points [4].
We finally recall the so-called Powell-Sabin split ([5]) of a given triangle,

T, which consists of dividing T:= P 1P 2P 3 into six mini-triangles (Fig. 1):

T(1'°) P 2M 1 R, T( 2',0 : P 3 M 2R, T(3'0 ): P 1 M 3R,

T(1'1) MIP 3 R, T(2' 1) M 2PR, T(3' 1) M 3P 2R,

where

R = 01 P 1 +,3 2P 2 + 03 P 3 , /31 + 2 + 3=1,

is a point internal to T and

Mi = (1 - ai)Pi+l + aiPi+2 , 0 < ai <1,

is a point internal to the edge of T opposite to Pi. Here, and in the following,
indices will be considered modulus 3.

We will denote by L IPq) the control points of Bernstein polynomi-

als in the mini triangle (p,q) (see below). Let the data

(Pi,fi = f(Pi),Vfi = Vf(Pi)),Pi G R 2, i = 1,2,3, (1)

be given. As mentioned in the introduction, our goal is to construct a C 1

polynomial macro-element on T interpolating the data and having tension
properties.

The macro-element will be obtained considering a Powell-Sabin split of
T, and constructing in each mini triangle T(P,q) a Bernstein polynomial via

suitable control points, L•iiq . To obtain the final control points (FCP) 0P)
we follow two basic steps: first we construct the basic control points (BCP)

L') then we modify them to reach the required smoothness of the macro-
element.
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§3. Defining the Basic Control Points

For each vertex Pi, let us consider an associated given degree

ni > 3, ni E N.

Let us now describe the construction of the BCP considering for the sake of
simplicity only the mini triangle T(3'°). See Fig. 2 for the role of indices.

First of all we assume interpolation conditions (for the position and the
gradient) at P 1 (see "*" in Fig. 3 left) that is

l (3 ,0 ) .
lnl,0,nl

?1,(3,0)
in,-l,1 ,10 fi + -i-Vfl,P1 R).

nl-1,0,1nl

In order to define the BCP around M 3, let us consider the univariate piecewise
linear function, 13, defined along the edge P 1P 2 having breakpoints at

P 1, P1 + 1P 1M 3 , P 2 - IM 3P 2, P 2 ,
nl n2

interpolating f and its derivatives at the extremes of the edge. We define (see
"0" in Fig. 3 left)

i(3 ,0)l03n0 10 :=13(M3),

1,n01, 1O=3M- p 1M3),(3)

10,l-n0! 13 (M 3 ) + id 3 ,

where
d3 := ((1 - o 3)Vf(P1) + a3Vf(P 2), M 3 R).

Moreover, we require that L 3'°)_2,0 (see "0" in Fig. 3 left) belongs to the
plane through

L (3 _0) L 3,0) L(3,o 0

Concerning the remaining control points, we assume that the not yet defined
control points of the first two rows in the mini triangle parallel to P 1 P 2 (see
"o" in Fig. 3 left) belong to the straight lines through the above defined control

points, that is

L 3,0) i -- 3 1 L (3,0) "- (n, - 2) - (i - 1) L(3,o)_1,o0 ,

i,n--i,O - 2 n,-1,1,0 n -+ 2

3,0) _i - 1 (3,0) (n, - 2) - (i - 1) (3 ,0 ) (4)
i,n,-i-1,1 nl -- 2 n,-1,,1 +- -- 2 ln 1 -2,1

i =nl - 2,...,2 .
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Fig. 2. The role of indices of the control points (projection onto the x, y plane)
for the split of Figure 1 with n. = 5, n2 3,n3 8.

O'e,

u,i

Pi M3

Fig. 3. The construction of the BCP for the split of Figure 1 with nl 5, n2=

3, n3 = 8. Left: projection of L ý3,jO in the x, y plane; 'Y' are deter-

mined via interpolation conditions (2); "0" by (3); "o" by (4) and""
by coplanarity conditions. Right: LýP`)p -1 2 3 q ,1)N t h

discontinuities across the edges MiR.

Moreover, we require that conditions for C' continuity across the edge PIR

hold [4]. Then, in particular,

L (2,1) L (2,) 1 1, (02,1) 2 2, = L (3,°) 0,2 , L (3,°)l 0' 1 L (3,°) , 1
l,nl--2,1, O,n -- , -~n - n1-2 , n1-1 , , -- ,,1

lie onto the same plane.
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0.7,

04,

(Qn

o.. io
or 0

Fina4.Lly,: theceta control points ,j'k kfe th 2,rs (stee, "n in Right: lheft

are assumed to lie onto the plane through

L.,-2,O0,2' n(02-2O2 n3 -2,O,2*

n2 0,21J

Similarly we define the BCP in the other mini triangles.
The above construction provides a polynomial macro-element which

turns out to be of class C' across the interior edges P2 R.
Moreover, we assume that the points M lying on the internal edges of the

initial triangulation T also lie on the straight lines joining the R points of the
triangles which those edges separate (see Fig. 8). This classical requirement,
(2), (3), (4), and the geometry of the Powell-Sabin split ensure C' continuity
of two macro-elements across the boundary edge PP>2,+ (see Fig. 3 right).

On the other hand, the BCP do not produce in general a continuous
macro-element across the edges MoR unless the degrees n. are equal (see
Fig. 3 right). In order to obtain a C' macro-element without imposing any
conditon on the degrees, we modify the constructed BCP. This will be de-
scribed in the next section.

§4. Obtaining a C1 Macro Element

In this section we describe how to modify the BCP to obtain the final control
points (FCP) producing a C 1 macro-element. The modified FCP will be
basically obtained from the BCP via the degree-raising process in two steps.

As a first step, for each mini triangle T(pq) let us compute

1;(P,q)
ij,k, i,j,k>0, i+j-+ k=n,

the control points obtained from L~j'i), i,j,k >0, +j + k - p+q+1, by
the degree-raising process ([4]) from the degree np+q+l (that is the degree
associated with the mini triangle T(p,q)) to the degree n := max{ni, n 2 , n 3 }

(see Fig. 4 left). The control points !i(j'q allow us to express the polynomial
o e dp,q)of degree np+q+l defined by L ,j,k as a Bernstein polynomial of degree n.
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We emphasize that, due to the geometry of the split, the control points
1;(P,q)

,,,k, define a macro-element which is of class C' across the interior edges
MpR if and only if the control points

-(p,O) -(p,0) __ y-(p,1) -(p,,)

1,n-l-k,k, LO,n-k,k - 'n-k,O,k Ln-k-l,1,k, k = 0,.. , n - 1,

are collinear. Moreover, we notice that, due to the construction of the BCP
around MP and near R and to the properties of the degree-raising process,
the control points

j(PO) 1 (P,O) -(jP,) 1 ;(p,l)1,n-l-k,k, LO,n-k,k ý L~n-k,O,k, S'n-k- j,l,ý, k¢= O, 1, n - 1,

lie on the same plane, then they are collinear due to the geometry of the split
(see Fig. 4 left). Then in order to obtain C1 continuity across the edge MpR,
we simply consider a second step in which we modify

-(P,0) v-(P,1)
j,,nk,k, L,•_k,0,k, k = 2,.., n - 2, p = 1,2,3, (5)

imposing that (see Fig. 4 right) they lie on the segment through

1,n-l..,kI, n-k-1,1,k, k = 2,.. ,n - 2, p = 1,2,3.

§5. Properties of the Macro-Element

In this section we analyze the interpolation, smoothness and tension properties
of the macro-element defined by the FCP constructed in Section 4. First of all,
we notice that the construction of the macro-element is completely local: it
only depends on the data at the vertices of T and on the degrees nj associated
with the vertices which are given input parameters.

Theorem 1. The polynomial macro-element defined by the control points

-(p,q)
ij,k, p=1,2,3, q=0, 1, i,j,k>0, i+j+k=n,

interpolates the data (1) and is of class C1(T). Moreover, let T be a given
triangulation equipped with a classical Powell-Sabin split, and with a fixed
degree associated with any vertex. Then the collection of the macro-elements
corresponding to the triangles of T produces an interpolating surface of class
C1.

Proof: The BCP defined in Section 3 produce an interpolating macro-
element which is of class C' across the interior edges PiR and the boundary
edges PjPj+i. After the degree-raising process, only the control points in
(5) are modified in order to obtain C' continuity across MiR. Since the C'
continuity across one edge only depends on the control points lying on the
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n• =n 2 n•3 3 n= n 2 =3, n3 6

n= 3, n 2 n3 6 fl
1 

n2 n 13 15

Fig. 5. The local tension effect of the degrees: vertices are numbered counter-
clockwise from the origin.

first two rows parallel to that edge ([4]), the second step in Section 4 does not
affect C1 continuity across PiR and PjPj+'. D~

As mentioned before, the degrees nj are free input parameters. From
the construction described in Section 3, it is clear that increasing their val-
ues causes the BCP to approach the plane interpolating (Pi, f?), i = 1, 2, 3.
Similarly, the FCP approach the same plane because they have been obtained
via a degree-raising process, that is via a convex combination of the BCP.
Therefore, the same property is shared by the macro-element, due to the con-
vex hull property of the Bernstein representation. We summarize the tension
properties of our macro-element with the following theorem.

Theorem 2. If nj, n2, n 3 -* +00, then the polynomial macro-element de-
lined by the control points

zj4 J,kip =1, 2,3, q =0,1, ij, k>0, i +j + k= n,

approaches the plane through (Pi, fi), i = 1, 2, 3.

We end this section by emphasizing that the degrees act as local tension
parameters: each degree affects the shape of the interpolating surface only
around the associated vertex (see Fig. 8 right), and, as previously said, this is
the main feature of this method. The increase of a degree pushes the surface
to the piecewise linear interpolant around the corresponding point, giving it
a cuspidal appearance. This local tension effect is clearly shown in Fig. 5.
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Fig. 6. Left: the Ritchie's Hill data. Right: the interpolating surface with uni-
form degrees nj 3.
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§6. Numerical Results

In this section we present a classical graphical example to show the perfor-
mances of the macro-element and the local tension effect of the degrees.

The data (Fig. 6 left) are taken from [6] (see also Fig. 8 left for the consid-
ered triangulation). The interpolating surfaces obtained by using the proposed
macro-element with uniform degrees nj = 3 is depicted in Figure 6 right. Fig-
ure 7 left shows the interpolating surfaces obtained by using uniform degrees
nj = 9. The tension effect due to the increased values of the degrees is evi-
dent, but obviously uniformly distributed over all of the surface. On the other
hand, the surface in Figure 7 right has been obtained considering all the de-
grees equal to 3, except those associated with the five vertices as depicted in
Figure 8 left. The local tension effect of the degrees is clear. The influence
region of the increased degrees can be also seen in Figure 8 right.
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