
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO1 1980
TITLE: A Note on Convolving Refinable Function Vectors

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
France, 1-7 July 1999. Proceedings, Volume 2. Curve and Surface Fitting

To order the complete compilation report, use: ADA399401

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP011967 thru ADPO12009

UNCLASSIFIED



A Note on Convolving

Refinable Function Vectors

C. Conti and K. Jetter

Abstract. When convolving two refinable function vectors which give
rise to convergent subdivision schemes, the convolved scheme is again con-
vergent. Moreover, the conditions on the mask symbols which characterize
the approximation order of the associated shift invariant spaces show that
the order of the convolved space is, essentially, the sum of the order of the
two spaces originating from the convolution factors.

§1. Kronecker Convolved Function Vectors

Our previous paper [3] deals with special subdivision schemes associated with
a shift invariant space of bivariate spline functions, where the "generators" of
the shift invariant space are produced through convolving lower order splines
of small support. The present paper gives a more detailed and more systematic
analysis of this convolution process. In this way it is possible to prove that
(i) the convolution of convergent subdivision schemes yields a scheme which is
convergent as well, and (ii) essentially, the approximation power of a convolved
shift invariant space is at least the sum of the approximation powers of the
two convolution factors.

We recall that a vector 4 = (01, 02, ... , q)T of (continuous, compactly
supported) d-variate functions is called refinable, if it satisfies a refinement
equation

= Ao, 4(2- (1.1)

Here, the refinement matrix mask A = (A,),2 is a matrix sequence with
each 'coefficient' Ao being a real (n x n)-matrix. We allow only masks of finite
support, i.e., Ao = 0 except for finitely many a E C d.
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Given another refinable function vector '1' (01, 02,...,m)T of d-
variate functions, satisfying the refinement equation

t1= Z * (2.-f) (1.2)

O3E2Vd

with corresponding matrix mask B = (Bp ),czdI, which is a matrix sequence of

(m x m)-matrices B,, we use the following Kronecker type notion of convolving
the two vectors:

E) := -P * IF :=

( *)

Here, the convolution of a scalar function Oi with the vector function 'I
is taken componentwise. This operation produces a vector function E =
(01,0 2 ,... , Otn)T with m x n components of type O(i-1)m+j := 0i * Oj- It is
not too hard to see that 0 is refinable again,

E® = : C•y O9(2.-) (1.3)

,7E 2Zd

where the refinement mask C = (C•),cuCd which is a matrix sequence of

(nm x nm)-matrices, is computed as follows:

C =-I A ®B_, a E Zd (1.4)

Here, the symbol 0 denotes the Kronecker product of matrices.
For the definition and some properties of this Kronecker product, we

refer to [4, Section 4.2]. It should be noted at least that neither the Kronecker
product of matrices nor the Kronecker type convolution is commutative.

§2. Convergence of the Convolved Subdivision Scheme

Let us also recall that a refinable function vector gives rise to a vector-valued
subdivision scheme as follows: In the situation of (1.1), the subdivision operator
associated with the refinable function vector (I) = (0i, 02, .. , 0.) is defined as

SA : y(7(7d))n-_ (f(2Zd))n,

(SA A)Q, A T_ A0, a E TZd (2.1)

where f(2Zd) denotes the linear space of sequences indexed by d . The com-
plete (stationary) subdivision scheme consists in the iterates of SA, namely:

For a given initial vector sequence A C (f(2a))n

Put AM°) := A and (2.2)

Compute A(k+') := SA A(k), k = 0,1,...
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Hence, the iterate A(k) = (AC()),Ed has components

Ck (A:) 2 10 A0), a E (2.3)

with the iterated matrices AWk) = (A-t))•E• defined by AM) := A and

A( A A )A,-2,3, a E 7d, for k > 1. (2.4)
13E71d

Following [2, Section 2.4] we say that the subdivision scheme converges
for A = (A1, .... , AA')T E (e00(Zid))n if there exists a continuous function fA
Rd -4 IR such that

lim fA(2)e - A(k) 0 for e = (1 I)T. (2.5)
n

Here, . denotes the sup-norm of the vector sequence A (A',..., An)T
given by

SA• := max 11A210.
0=1...,n

The symbol fA(-) is short for the scalar-valued sequence (fA(-2))Ed - It
should be noted that, since for any convergent scheme the limit function fA
is given by

fA =(A ' • - a),
oeE2Z2

we can recover the components 0j, i = 1,... ,n, as follows: choose the initial
sequence A = (A1, ... , A n)T in the following way that A' is a delta sequence
(i.e., A' = 6c, for a E 2Zd) while all other sequences AJ, j 5 i, are null
sequences. This special initial vector sequence and its iterates will be denoted
by E, and Elk), k > 0, respectively. It then turns out that

lim 0i()e = 0 for i=1,...,n. (2.6)k--oo 11 ý_o ' '

Theorem 2.1. Given two convergent subdivision schemes associated with the
relinable function vectors P and I', the (Kronecker type) convolved scheme
associated with E = 4 * * is again convergent.

Proof: Let f := (1 1 ... 1)T, and let Fj denote the vector sequence (com-
m

posed by m sequences) with the delta sequence at position j and the null
sequence at all other positions. If F k) k > 0 are the iterated vectors with
respect to the '-subdivision, we have

li j()f-F( k) = 1 0 for j=1,...,m, (2.7)k- . 3 00-- . . m
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in addition to (2.6). In order to prove the theorem, we will show that

limu ((*j)(-)e® f)- (E2 *Fj)(k) -1 =0 (2.8)
k-- ooII k))0

for i = 1,...,n and j = 1,... ,m. Here, the convolution of two vector se-
quences is defined by

V2 ) 2 \2,
AF := • y := .

An 7) \ An,

where the convolution of a scalar sequence A' with the vector sequence r is
taken componentwise, i.e., Ai * r = (Ai * _Y1, Ai * 72,. ... , Ai * 7m)T. We will
also use the estimate

11A * r a min { HAII1 , NAjjjjr },

where 1AiII := max~i=l,...,n l Hill, with the usual 1-norm of scalar sequences.

Now, the iterated matrices C(k) for the O-subdivision can be expressed
by the iterated matrices A(k) and B(k) for the 4I- and P-schemes as follows:

C(k) (k= 1 (k) 6 a G 2 (2.9)

dk 6 a-

Thus, taking Ei * Fj as a starting vector for the 0-subdivision, the iterated
vectors are given by

(Ei*Fj)(k) -- 1 Ek) * F k) , k_>0, (2.10)

whence

((Oi * 0J)('-k))(e ® f)- (Ei* Fj)(k)

= (4¢ * j)( ))(e f) - 21k (0i(2)e) (* j
1 \32 k ' 2-k 2k2

1Ek) ¢(• ýfFk,)

+2 d-k Elk * (Oj,(*)f-F

2dk (Elk) - •_k)e) . (* j ýk)f).

We estimate the three vector sequences in the preceding three lines as
follows: the first term is a vector sequence where each component of the

vector consists of the sequence (ea)),E,,d with

e~):= 1 - a1f (0i(i)) (O( x)) dx - E (0i (V I)
Tk 2 6eZdk2kk
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This is the error of a tensor product rectangular rule applied to the convolution
integral, and due to the continuity and the compact support of €i and Cj we
get

lim sup 1e(k)I = 0.
k- oo 2Ed

For the third term,

2dk 1 (E)e)*(oj( *)f) !5< E _-oi( )ell.2' 11 j(*)f l'

_dk Z ýkF _ 2 d~k 1'T

and the bound tends to zero as k -+ oo, since

1loj(*)f 1 ¢dk E aoj JRd )I dx.aE2Zd

Finally, for the second term

1 (11E k) *(-')f- <ck 11WfF k) l 0

ýd ~ T 3 2 k 3 00

as k --+ oo. This follows from

S1_ IEY) <111C k ~lj: 1 10( ')l,) + 2-- 110 i( )e _E ýk)lli'

:2 d.k Z 1 - 2 k - )e 1 ± dk

since the first term on the right-hand side converges to fRd i(x) Idx, and the
second term is bounded due to (2.6), the uniform continuity of the compactly
supported function 0i, and the fact that for some compact set K C Rd (in
fact we can take the support of 0i):

(E(k)) -0 for •-K.

This latter property is a consequence of the compact support of the matrix
mask A, since we start the iteration with a 'delta'-sequence Ei. In conclusion,
(2.8) holds true. []

§3. Approximation Order

Approximation orders of shift invariant spaces have been studied quite inten-
sively in the past few years. Concerning definitions and notation we refer to
the recent survey [5]. A characterization of approximation power in terms of
the mask symbol is also given there. In case of the refinement equation (1.1),
this mask symbol is defined by

aE2Zd
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The result is as follows: For given k e IN we say that H• satisfies condition

(Zk) if there exists a row vector v = ('1-,..., T,,) of trigonometric polynomials
such that

v(0) 4(0) $ 0, v(0) H1(0) = v(0), (3.2.a)

and
DA v(.)H (2) 0 for jyj <k and )3 c E1, (3.2.b)

where EO is short for the set of corners of the cube [0, 1]d with the origin
removed. [5, Theorem 3.2.8.(i)] then asserts that condition (Zk) implies that
S. has L27 approximation order k, for f E W•k(Rd).

Lemma 3.1. If the mask symbol Hp satisfies condition (Zk) (with the row
vector v) and the mask symbol H, satisfies condition (Zt) (with the row vec-
tor w) then the mask symbol He of the convolved function vector 0 :=4 * XF
satisfies condition Zk+t (with the row vector z := v ® w).

Proof: We apply the identity

He = H , ® Hp (3.3)

several times. Condition (3.2.a) holds for the convolved function vector, since

(v 0 w)(0) ((b* -)(0) = v(0)(0)w(0)4f'(0) 0 0,

and by (3.3),

z(0)Ho (0) = (v(0)Hn(0)) 0 (w(0)HM (0)) = v(0) & w(0) = z(0).

In order to verify condition (3.2.b),

D1 (z(.)Ho(2) = 0 for 1,1 < k +f and 03 E E,

we make use of the Leibniz-type formula

(i)D- (v(.)H.1,  DA) 0 D" ()H

at every point 1 E E'. []

In order to derive an approximation order result from this lemma, we refer
to the precise statement of [5, Theorem 3.2.8]. A sample result is as follows:
If the shift invariant spaces associated with 4 and %F have approximation
orders k and f, respectively, and if the Gramians G4, and GP, satisfy the
regularity condition given in [5, Theorem 3.2.8.(ii)], then the 'convolved' shift
invariant space has (at least) approximation order k + f. However, in general
the 'convolved' Gramian Go does not satisfy this regularity condition.
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§4. An Example: Bivariate C 1 Cubics on a 3-directional Mesh

In [3], we have given an example of piecewise Cl-cubics on the four-directional
mesh. Following [1], we consider piecewise Cl-cubics on the three-directional
mesh generated by the lines x = k, y = 1, with k, I E 7Z when adding the
diagonals x-y = m, m E 7Z. A basis of this space is given by the two functions
01 = B111*XT1 and 02 = Blll*XT2 , with B 11 the linear three-directional box-
spline (or "Courant" element), and XT,, XT 2 the characteristic functions of the
two triangles T1, T2 obtained by cutting the unit square [0, 1] 2 by the 'north-
east' diagonal. Thus, 9 = 4I * • with I) := (B 11l) and q, := (XTý,XT2 )T.

Now, ck = (B 11l) satisfies a scalar refinement equation (1.1) with refine-
ment mask

•.0 0 0 0 0...

110 ...
011 1 0

02 2A-(A)az• ... o01 1 100... ,

2 2 ...

.0 0 0 00 ...

and %P = (XT", XT,)T satisfies the refinement equation (1.2) with matrix mask

0 0 0 0 0 ...

(B)0 0 (0 0) 1 )0
-E= = 00 1 0) 101)0

S..00 0 0 0 ...

Here, the indexing of the 'coefficients' is such that the boldface entry is at
position a = (0, 0).

It follows that E = *I. * satisfies the refinement equation (1.3), with the
matrix mask C as displayed on the following page, and Theorem 2.1 provides
the convergence property for the associated subdivision scheme.

Concerning approximation order, Lemma 3.1 can be applied by putting
k = 2, f = 1, and z := (1) ® (1 1). As a consequence, the approximation order
for bivariate Cl-cubics on the the three-directional mesh is at least 3, and this
is the precise approximation order (as was proved in [1]).



142 C. Conti and K. Jetter

0 0 0 0 0 0..

o (o (3 4) (A ) (A A)o(0o (A 9) ( 4) (A A)

0 0 0 0 0
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