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Bases in Function Spaces on Compact Sets

Zbigniew Ciesielski

Abstract. This is a brief history, covering the twentieth century, of
spline bases on cubes, and an exposition of constructing bases in classical
function spaces over compact smooth finite dimensional manifolds.

§1. Introduction

The aim of this paper is to present an overview on some twentieth century
developments in the theory of spline bases. We start by recalling some of the
relevant notions on bases in Banach spaces (for more details see e.g. [1,30]).
For simplicity we are going to stay within the real Banach spaces. An abstract
Banach space X with the norm 11" i x is denoted as [X, 11 ix]. The sequence
(xn, n = 0, 1,...) in [X, I1" ijx] is called a basis in X if to each x E X there is
a unique sequence of scalars a = (an, n = 0, 1,...) such that

00

x = Y ar n. (1)
n=O

There are unique linear functionals (x*) C X* such that an = x*(x). The
system (xo,x1, ... ,XoXT..) is biorthogonal i.e. x*(x) = 5k,i. The basis
(xn) is unconditional if for each x E X the series in the right hand side of (1)
converges unconditionally. Now, denote by A the set of all a appearing in (1)
while x is running through X. The linear space A becomes a Banach space
linearly isomorphic to X with the norm

n

IIQJaA = sup 11 ai xillx. (2)
n>O i=O

The Banach space [A, 11" 11A4] is customarily called the coefficient space. Intro-
ducing the basis constant, which by the Banach-Steinhaus theorem is finite,

n

f3= sup suplEiaxilx, (3)
II}xljx•5 >O i=O
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we obtain the equivalence of norms

jjxjjx :_ jja11A ! 0 1xlIIx. (4)

Thus, every Banach space with a basis is linearly isomorphic to a sequence
space. However, depending on the space X and on the particular basis, the
corresponding sequence space may be of little use. Sometimes it helps to con-
sider equivalent basis in X. Two basis (xv) C X and (xx) C X' are said
to be equivalent if A = A'. In case of equivalent bases we conclude that

lalWIA - IkaJIA, for a e A. Now, we may describe the program of the pa-
per. For a given compact C'O finite dimensional manifold M and for given
order of smoothness m, we are going to describe the construction of biorthog-
onal system of functions of class Cm over M such that the system itself is a
basis in VMO(M), HI(M) and and in the whole scale of Sobolev Wk

-m< k < m, and of Besov spaces Bpq(M), -m < s < m, with 1 <_p,q < oo.
At the same time the dual system is going to be a basis in the same scale of
function spaces with the corresponding spaces VMO, H 1, W and B replaced

by VMO, H1, W and B, respectively. The constructed system of functions (or
its dual) is always an unconditional basis whenever the space admits an un-
conditional basis. Moreover, for the constructed basis, we are able to describe
the coefficient spaces in case of the BMO and Besov spaces. The duality
questions will be treated at the same time. The main idea of the general
construction was announced by T. Figiel and the author at the Gdafisk 1979
conference: Approximation and function spaces (cf. [14]), and then carried
out in the subsequent papers [10,11,15,16,17].

The material is arranged as follows: Sections 2 presents historical remarks
on the Haar, Faber-Schauder, Franklin and spline systems; Section 3 treats
function spaces and bases with boundary conditions on the cube; Section 4
describes the reduction of function spaces and bases from manifolds to the
cubes with boundary conditions.

It is encouraging, that in recent years, the ideas of the constructions from
[16,17] stimulated works on modifications of the decomposition of the func-
tion spaces on smooth compact manifolds into standard spaces, and also on
constructing new bases in the standard spaces. The new investigations of
W. Dahmen and R. Schneider as they were presented at this Saint Malo con-
ference (see also [19]) are very promising as they show that these constructions
can be applied to treat singular operators on manifolds both theoretically and
numerically.

§2. The History of Haar, Faber-Schauder, Franklin and Spline
Systems

At the very origin there is the construction of A. Haar (1909) [25] of a simple
ONC (orthonormal and complete) system X = (Xn, n = 1,...) on I = [0, 1].
The system X has the nice property that each continuous function has its
Fourier-Haar series uniformly convergent on I. Here and later on, unless



Bases in Function Spaces on Compact Sets 123

otherwise stated, the orthogonality is understood with respect to the Lebesgue
measure. The orthonormal Haar functions over I can be defined by means of
a single function h, where

1I for -1 < t< 0,
2

h(t)= -1 for 0 <t< 1

0 otherwise.

Define for j > 0, 1 < k < 2i and n = 2i + k
1 an ~t'- - ~' 2h2'~t 2k-i

X, = 1, and Xn(t) = Xj,k(t) = 2i - 2-+ )) (5)

The Haar functions are piecewise constant and left continuous i.e. they are
splines of order r = 1 (of degree r - 1 = 0). For later convenience for the
support of Xn we introduce the symbol (n) = [-k-1, k] (and let tn = 22k-1

denote the middle point). It was pointed out by J. Schauder (1927) [29]
that the Haar system X is a basis in the Lebesgue space Lp(I), 1 < p < cc,
with the basis constant equal to 1. Much more involved was the proof of
R.E.A.C. Paley (1932) [27] (see also J. Marcinkiewicz (1937) [26]) that the
Haar system is an unconditional basis in each Lp(I), 1 < p < c<. For a real
variable proof of this property, we refer e.g. to Ch. Watari (1964) [31]. The
unconditional basic constant for the Haar system in Lp(I) appears to be equal
to max(p,p') - 1 where 1ip + i/p' = 1 (see e.e. D.L. Burkholder [5]). The
extensively investigated martingale theory covers many results on the Haar
system, but it is not very related to our subject, and will not be discussed
here (see e.g. [23]).

To construct the Faber-Schauder, Franklin and more general spline sys-
tems, it is convenient to introduce the following operations on sequences of
functions. For a given sequence _ = (¢, n = 1, 2,...) of integrable functions
on I, we define

GO_ = (1, G~n,n = 1, 2,...) and G07 = (Gbn,n = 1, 2,...),

where Gf(t) = ft f(s) ds. If in addition, the functions in V_ are linearly
independent, then the result of the Gram orthogonalization process applied
to 0_ is denoted by OV_. It is assumed in this definition that so obtained

orthogonal set is normalized in L 2 (I).
The Faber-Schauder system can now be obtained from the Haar system

by the operation G
¢ = (Onn > 0) = Gx. (6)

The Faber-Schauder functions are continuous splines of order 2. It was proved
by G. Faber (1910) [21] (see also J. Schauder (1927) [29]) that this system is
a basis in the space of continuous functions [C(I), 11 • 11.]. In this case the



124 Z. Ciesielski

basis constant is again equal to 1 and the basis itself is interpolating at dyadic
points of I.

The orthonormal set constructed by Ph. Franklin (1928) [22] can now be
defined as the result of application of the operation 0 to the Schauder system

f = (Mn = 0, 1,.... ) = 0. (7)

These functions are again continuous splines of order r = 2. Ph. Franklin
proved in [22] that f is a basis in [C(I), [1" tl10]. For an elegant proof that the
Franklin system is a basis in C(I) and in Lp(I), 1 < p < oo, we refer to [6].
Using the same idea as in [31], S. V. Botchkarev (1974, 1975) [3, 4] proved
the unconditionality of the Franklin system in each Lp(I), 1 < p < oo. There
is an extensive literature on the pointwise behavior of the Franklin series, but
we mention only the expository article by G. G. Gevorkyan [24].

The operation G increases the order r of splines and the order of their
smoothness by 1, and 0 preserves these orders. We may repeat this two step
process starting now with the orthonormal Franklin system and then repeat
it again and again. In general, for r > 1 we use the notation

f(f) _ (f(r), n > 1 - r) and O(r,, = (O(r,,),n > -r) = Gf(r)

and
f(r+l) = O(r,1).

Consequently, we have for the order r > 1 the following inductive formula for
the spline ONC system on I

f-(r+l) = 0 o -Gf(r) with f(l) = X. (8)

In particular in this notation 0(1,1) - _ and f - f( 2). It was proved in [7]

that 0(2,1) is a basis in [C(I), I" IQo] and by J. Radecki (1970) [28] that f( 3)

is a basis in [C(I), I [o] and in each Lp(I), 1 < p < oo. The proof that f(r)
for arbitrary r > 1 is a basis in C(I) and in Lp(I) follows from the work of J.
Domsta (1972) [20] (see also [12]).

From the construction of the ONC system f(r) it follows that its first r

elements - f-1) are simply the orthonormal Legendre polynomials on

I; the degree of f(r) is i + r - 2. Now, with each r > 1 we associate a family
of spline systems

f(rk) = (f(,k),n>Iki+1-r) with -r < k <r, (9)

where

Dkfir) for 0 < k <(10

fn") H-k for -r < k < 0,
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and Df(t) = tf(t) and Hf(t) = ft f(s) ds. Since D is inverse to G and H is
adjoint to G in L2 (I), it follows that for Ik[ < r,

(,(rk) f(r,-k)) = bn,m for n,m>IkI+1-r. (11)

Equally important are spline ON systems defined by formula similar to (8)
with G replaced by Go, i.e.

g_(r+l) = Oc G0 g(r) with g(l) = X. (12)

Here again, with each r > 1 we associate a family of spline systems

9 (r,k) A (g(r~k))n > 1) with -r< k <r, (13)

where

(rm) kg) for 0 < k < (4

g, H-g(• for -r < k < 0;
and as before we have for Iki < r,

((r,k), (r,-k)) = bn,m for nm > 1. (15)

In what follows in this section we denote by F(r) either f(T) or g(r). Since

the family {F(r'k), -r < k < r} of spline systems is the main ingredient in the
construction presented in the next section, it is natural to recall now its basic
properties. Notice that the elements of F(',k) are indexed by n > n(k, F),
where n(k,f) = Ikl + 2 - r and n(k,g) = 1.

For given r and k such that Iki < r and for given n > n(k, F), we have
the kernel corresponding to the partial sum operator with index n

Kn'rk)(s, t) - F(,r-k)(s). F,(nk)(t) for s, t E L. (16)
v=n(k,F)

The following exponential estimates (cf. [8,13,17]) play a fundamental role
in our construction. There are two constants: C = Cr < oc and q = qr,
0 < q < 1, such that for Ikl < r we have

IKgnrk)(st)I <_ C. (n + r) . q(n+r)ls-tl for s, t E I, (17)

and
IFc(rk)(t)I K_ C. (n + r)k+2, q(n+T)It- for t E I, (18)

where tn has been defined earlier as the middle point of (n). Now, the
biorthogonality (11), (15) and (18) imply for 1 < p < cc, Jkl < r, and for
any real sequence (an, 2j < n < 23+1), (j > 0), the equivalence

a,.* (r,k) (k!! . ( 1Z a' : (9
11 an" F 11k p -• 2i~+-) ( janlp )1- (19)

2j<n<2j+l 2j<n<2j+l

Moreover, it follows that

1 E an". Ffk) 1I1 II Ian . Fn(rk) I 1P, (20)
2j<n<2j+l 2j<n_<2j+1

where the positive constants in the equivalences - in (19) and (20) depend
on r only.

Now, as one of the consequences of (17) and (18), we obtain
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Theorem 1. For given r, k, Iki < r and p, 1 < p < co, the system F(rk)

is a basis in Lp(I). Moreover, for 1 < p < co, each of the systems is an
unconditional basis in Lp(I), and all of them are equivalent bases in this

space. Moreover, F(rk) is a basis in C(I) for each k, 0 < k < r - 2.

§3. The Standard Spaces over Cubes

We start with general setup which will be needed in the following sections. Let
the dimension d be fixed, and let M be a compact C' 0 d-dimensional manifold
(d-manifold). For simplicity, we assume here that M has no boundary. We

denote by [t one of the measures which locally is of the form dtl = h dx where
h is positive C0' function. A closed set Q C M is said to be a d-cube if
it is diffeomorphic to the standard cube [0, 1]d. A compact set K C M or
K C Rd is said to be proper if it can be viewed locally as an epigraph of a
lipschitzian function of d - 1 variables (cf. Def. 3.1 in [16]). We are going
to discuss function spaces .F(K) over a proper subsets K, in particular the
Sobolev spaces with T = WP and the Besov spaces with T = Bpj,q. In the

Sobolev space Wp(K), K C Rd, 1 < p < cc, m > 0, we shall use the norm

lfll~m)(K) = DIDOfIp(K). (21)
1-l<m

Clearly, W°(K) = Lp(K) and we denote by W•(K) the space C m (K). More-
over, the space of equivalence classes of measurable functions over K equipped
with the topology of convergence in measure is denoted by Lo(K). In order

to define Wk(K) for k < 0, we introduce Wp(K) for each m > 0 as the

closure in the norm (21) of smooth functions f such that suppf C intK. For
1 <p<oo, k<K0andforgE Wp,(K) put

(K) =sup {I J fg dxj f I (K) • 1, f E WP(K) (

where p' = p/(p- 1) for 1 < p < co and 1' = co, oc' = 1. Now, the completion
of W',(K) in the norm (22) defines the space WkI(K).

Let now I = [0, 1], Q = Id and let Z be a boundary set i.e. a set which is a
union of (d - 1)-dimensional faces of Q. To each pair {gF(Q), Z} we associate
a subspace of T(Q) of functions which are vanishing on Z C OQ in the sense
described below. To each Z there are unique Zi C 01, i = 1,... , d, such that

Z = Q \ (I \ Z1) x... x (I \ Zd). (23)

Now, define for each Z the parallelepiped

Qz = Izl x ... x Izd, (24)
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where
w[0, 1] for Z = 0,

[-1,1] for Z = {0}, (25)
Iz - [0,2] for Z = {1},

[-1,2] for Z = {0, 1}.

If f G Lo(Q), we denote by fz the element of Lo(Qz) such that fzIQ = f
and fz = 0 on Qz \ Q.

Definition 2. For given integer k and 1 < p • co, put

I1f 1I(k)(Q)z = IIfz11,k)(Qz).

Now, if k > 0, define

Wp(Q)z = {f E W°O(Q): fz E WC (Qz)},

and if k < 0 then introducing Wo = {f E W°(Q) : fz E Wk(Qz)}, define

W•(Q)z = completion of Wo in the norm IIflII•k)(Q)z.

The spaces [Wp1 (Q)z, II I.1(k) (Q)z] are called standard.

Notice that for k > 0 the set {fz : f E Wpk(Q)z} is a closed subspace

of Wk(Qz), and by Definition 2 the map f 4 fz is an isometry. Now let
k K 0. In this case the map f - fz extends to an isometry of Wpk(Q)z
into Wpk(Qz). Thus Wpk(Q)z is always complete, and the image of the map

f F-+ fz is a closed subspace of Wpk(Qz). We have constructed in [16], using
the formulae (23) and (24) and the generalized Hestenes extension operators,
a bounded projection onto this subspace.

Proposition 3. Let m > 1 and the boundary set Z C aQ be given. Then
there are a continuous linear operator P in Lo(Qz) and C < o0 such that P
projects Lo(Qz) onto {f : f = 0 a.e. on Qz \ Q} and for 1 < p < co we have

IIPfIIpk)(Qz) <_ cl Ilf~k)(Qz) for f E Wpk(Qz), Ikl Km. (26)

Thus, P projects Wk(Qz) onto a subspace which is via the map f '-* fz
linearly isomorphic to Wpk(Q)z.

Now, for k < 0 and 1 < p < co we define the bilinear form
fQg E(-k •QW(Q). (27

g*(f) = fgdx for g* (W,(Q)z), g W(Q). (27)

Proposition 4. Let k < 0 and 1 < p < co be given. Then the map

g - g*: W°(Q) -- (W•;k(Q)z,)*
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defined in (27) extends to a linear isomorphism of Wk(Q)z onto a subspace

of (W-7k(Q)z, )*.

Now suppose real s and 1 < p, q < cc are given. Moreover, let K be a

proper set. Then for any integers k, 1 such that I < s < k, we have the real
interpolation formula for the Besov space (with 0 = (s - l)/(k - 1))

Bps,q(K) = (Wp(K), W k(K))oq. (28)

For f c Bp,q(K) the norm is denoted by I1fL1(p) (K). The Besov space over Q

with 1 = 0 < s < k and corresponding to the boundary set Z C OQ is now
defined by the formula

Bp,q(Q)z = {f E W°(Q): fz C Bp,q(Qz)}. (29)

Moreover, let us define for f E Bpq(Q)z

IfIllp:q(Q)z = IIfzII•pS(Qz). (30)

The Besov space [Bpq(Q)z, 11 (Q)z] will be called standard as well. Notice,
that Bp,q(Q)z _ Bp,q(Q), but it may be not a closed subset of Bps,q(Q).

Proposition 5. Let the parameters 1, k, 0, s, p, q be given as for (28), and let

.(Q)z = (Fo(Q)z,.i(Q)z)o,q where Fo = W•, F1 = W . (31)

Then, F(Q)z = B7',q(Q)z fors > 0 and fors < 0 the space F(Q)z is naturally

identified with the closure of Wp in (Bq-,,,(Q)z')*.

The proof is based on the existence of the projection P in Proposition 3,
and on the general properties of the real interpolation spaces (see [2, 16]).

Corollary 6. Suppose we are given real numbers s, 1 < p, q < oc, an integer
k, and a boundary set Z C OQ of the cube Q. Then the standard spaces

.F(Q)z are well defined for J' = Wk or Bp,q. Moreover, if 1 < s < k, then
formula (31) takes place.

In the last part of Section 3 we are going to present a construction of

spline bases in the F(Q)z spaces. Actually, according to (31), it is sufficient
to do it for the Sobolev spaces Wpk(Q)z.

We start with the case of dimension d = 1. To each Z C I and for an
integer m = r - 2 > 0 a spline system is defined as follows:

f,( 2 r'r)(t) if Z = 0 and n > 2-r,

f( 2'-r)(t) if Z = {0, 1} and n > 2 -r
F.(-) (t; Z) = (2r•r t)'t (32)

gn r () if Z = {0} and n > 1,

(2r,-r) 
t)gn ( f) ifZ={1} andn> 1;
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where the f_(r') and g(rL) are given as in (10) and (14), respectively. Moreover,
let

lkl+2-r ifZ=@,

n(Z)=n(Z,O) and n(Z,k) = lkl2r ifZ={0,1}, (33)
1 if Z = {0},

1 if Z = {1}.

For simplicity let us write F(m)(Z) = (Fnm)() ;Z), n > n(Z)). Notice that
n(Z, k) = n(Z', -k), and that the two systems F(m)(Z) and F(m)(Z'), where
Z' = 0I \ Z, are dual, i.e. they are biorthogonal in the L2 (I) scalar product

(F.'C)() ; Z),F~m)(- ;Z')) = bij for i,j Ž_ n(Z). (34)

Now, we introduce related family of biorthogonal systems indexed by k with
Iki < m. Namely, for j Ž_ n(Z, k), let

F ) Z) = DkFým)( ;Z) for 0 < k < (35)
' ;) -kF~m)(•;Z) for-m<k<0;

and the biorthogonality for Iki < m is as follows

(F.(mk)(. ;Z),F(m'-k)(. ;Z')) = bij for i,j >_ n(Z,k). (36)

Theorem 7. For each Z COI, 1 < p • c, the system F(m)(Z) is in WM(I)z
and it is a basis (an unconditional basis if 1 < p < oo) in each Wk(I)z
for k = 0,..., n. This means that it is a simultaneous basis (simultaneous

unconditional basis if 1 < p < cc) in [W•(I)z, ii" lip

Proof: To see how the proof works, let

Pf(x;Z) E (fF(m)(" ;Z'))F(m)(x;Z) for f E Lp(I). (37)
n(Z)<j<n

Then we find that for 0 < k <in
DkPn f(x; Z) = P,(k) (Dkf)(x; Z) for f E W(k)(I)z, (38)

where for g E W°(I)

Pn(')(g)(x;Z) = E (g,Fj(m'-k)(• ;Z'))Fjm')x;. (39)

j=n(Z,k)

Now, Theorem 7 follows immediately from Theorem 1 by (38) and (39). El
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Now we consider the case of dimension d > 1, with Q = Id. Suppose we
are given Z C OQ. Then according to (23) the Zi C aI, for i = 1, .... , d, are
determined. We are ready now to construct the tensor product basis corre-
sponding to the boundary set Z. Each function of the basis under construction
is determined by an integer vector j = (il, ... , jd) satisfying the inequality
j Ž n(Z) with n(Z) = (n(Zi),... n(Zd)) i.e. ji Ž_ n(Zi) for i = 1, ... , d.

Given the order of smoothness m > 0, we now define the j's function as
follows:

FOm)(x; Z) = F(-)(Xl; Z,) x ... x F(-)(xd; Zd), (40)

where x = (x,.. ., Xd). The indices j are ordered in the rectangular way (cf.
[12], p. 221).

Theorem 8. The system (Fjm)(• Z),j > n(Z)) in the rectangular ordering
is a basis in Wpn(Q)z for 1 < p < oo, and in addition it is unconditional in
these spaces if 1 < p < oo.

Our next goal is to modify the basis (40) in such a way that the ele-
ments of the new basis will be concentrated around the corresponding dyadic
points in Q. To this end let us introduce in dimension one the following finite
dimensional spline spaces:

SI (Z) = span{F(m)(.; Z): n(Z) <j _2"} where pŽ>1. (41)

Now, without going into details, we accept the Definition 10.17 of [17] of the

new spline basis in S,(Z), i.e. of F(,7)(; Z) with n(Z) < j _< 2P. The new
basic functions for the standard space Wpm(Q)z are now defined as follows.
For convenience, let D = {1, ... , d}, and let

No(Z) = {j : n(Zi) •j ii< 1 for i c D},

and for every e C D, e 5 0, p, > 1, let

Ne,g(Z) = {j : 2/-1 < ji -- 2" for i C e, n(Zi) • ji •5 21-1 for i c D \e}.

We also introduce
NI(Z)= U Ne,(Z).

00eCD

Definition 9. Let

Gým)(.;Z)=F~m)(.;Z) for jcNo(Z),

and
•m)(•0F' =),F•();Z)) for jCENe,p(Z)

iEe iED\e

f'oranyeCD, e00, andyi>1.
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Any ordering -< of the set of indices {j : _ n(Z)} is said to be regular if
j -< j' for any j e N, and j' E N., whenever yi < t' (cf. [10]). We also have
the biorthogonality relation

(G(-m(. ;Z), Gý(.;Z')) = bj,,j (42)

We can now state the result on 'universal basis' in standard spaces (cf. [10,
16])

Theorem 10. Let m > 0 be a given order of smoothness. The system

(G )(. ;Z), j Ž_ n(Z)) in the regular ordering is a basis in all the spaces

Wpk(Q)z for 0 < k < m, 1 < p < oo, and in addition it is unconditional if
1 < p < c0. Moreover, for IL > 1, 1 < p < so, we have

II• atGm)(" ;Z)llp "2A(112-11p)d( Y'asPl~' (3

jEN, jEN,

where the constants in the relation depend only on d and m.

Corollary 11. The system (Gým)(• Z),j > n(Z)) in the regular ordering is
a basis in all the spaces Bp',q(Q)z with 1 < p, q :_ so, 0 < s < m. Moreover,
for

f()= ajGm)( ;z),
j>_n(z)

letting a = s/d + 1/2 - l/p, we have

I If I I p,)(Q) z {0 1 ~~~S IaI)/I
/1=0 jEN,

The constants in the relation - depend on m, s and on d.

For an arbitrary d-cube Q, the function space -F(Q)z is defined as the
image of F(Id)z under the linar mapping induced by the diffeomorphism
between Q and Id.

§4. Decomposition of Function Spaces over Smooth Manifolds

Let us start with the decomposition of M without boundary (for M with
boundary cf. [16]). We say that M admits decomposition into d-cubes if for
some N there are d-cubes Q1, - - , QN C M such that Uj<NQj = M and if I)j
is a diffeomorphism of [0, 1]d onto Qj, 1 < j • N, then the set 4Pl(ui<jQi)
is the union of some (d - 1)-dimensional faces of [0, 1]d. The decomposition

Q1.... QN, is said to be proper if the sets U <j Q are proper for j = 0,..., N.
Now we have the following result whose proof depends very much on Morse
theory (cf. Theorem 3.3 in [16]):

Theorem 12. Let M be a compact d-manifold. Then M admits a proper
decomposition.
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For the Sobolev W1k(M) and Besov Bpq(M) spaces, we have the real

interpolation formula for any integers 1, r, real s, I < s < r, and for 1 < p, q <

oo (cf. [15])
BP,q(MV') = (Wt'(M), Wý(M))0,q, (44)

where s = (1 - 0)1 + Or. We recall that for the standard Besov spaces, we

have similar formula (cf. Proposition 5). Having a proper decomposition of

M (Theorem 12), we would like to obtain a corresponding decomposition of

.F(M) into a direct sum of standard spaces JF(Qj)zj. Let Lo(M) denote the

space of all measurable functions (of equivalence classes) with the topology of

convergence in measure.

Proposition 13. Let Q1, ... ,QN be a proper decomposition of M into d-

cubes as in Theorem 12. Let pL be a smooth measure on M. Then, for any

m > 1, one can construct continuous linear operators P..... , PN in the space

Lo(M) with the following properties for f e Lo(M):

SFif = f, (45)
i<N

PiPjf = 0, if1 < i 5 j < N, (46)

xQPjf = PixQjf, if 1• i < j < N, (47)

there is C < oo such that for all spaces Wp(M), 0 < k < m, 1 < p c0 , for

all g C Wk(M) and for 1 < i < N we have

IIpigII'k)(M) •_ cI gHlk)(M), (48)

the adjoint operators (in the Hilbert space L 2(M, ,U)) Pl,..., Pk satisfy the

analog of (48).

Proposition 13 implies the main result on decomposing the function spa-

ces .F(M) (see [16]), i.e.

Theorem 14. Let Q1,..., QN be a proper decomposition of M as in Theo-

rem 12, and let P1 ,..., PN be the linear operators from Proposition 13. Then
the formulae

Tof= EXQP'f' Vof= ZXQ.Pif
i<_N i<_N

define linear isomorphism of Lo(M) onto itself, the inverse maps being, re-

spectively,

Sof = E PixQf, U0f = E P*XQf.
i<N i<N

Moreover, if .f denotes Wk, 0 < k < m 1 < p < co, then To, Vo induce linear
topological isomorphism

Tw:re (M)--+Z( '(QQ)z,, V:Q-(M)Q-d-Q(Qi)zI,
i<_N i<_N

where gi = Qj ui<j Qj and Z'i = Qi uj>i Qj.



Bases in Function Spaces on Compact Sets 133

Corollary 15. The assertions of Theorem 14 remain true for .F = Wk BS
with Iki • m, IsI < m, 1 < p,q < oo. Moreover, there is now an obvious
extension of Theorem 10 and Corollary 11 to F(M) for all these spaces.
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