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Curvelets: A Surprisingly Effective Nonadaptive
Representation for Objects with Edges

Emmanuel J. Candés and David L. Donoho

Abstract. It is widely believed that to efficiently represent an otherwise
smooth object with discontinuities along edges, one must use an adaptive
representation that in some sense ‘tracks’ the shape of the discontinuity
set. This folk-belief — some would say folk-theorem — is incorrect. At
the very least, the possible quantitative advantage of such adaptation is
vastly smaller than commonly believed. We have recently constructed a
tight frame of curvelets which provides stable, efficient, and near-optimal
representation of otherwise smooth objects having discontinuities along
smooth curves. By applying naive thresholding to the curvelet transform

of such an object, one can form m-term approximations with rate of L2
approximation rivaling the rate obtainable by complex adaptive schemes
which attempt to ‘track’ the discontinuity set. In this article we explain
the basic issues of efficient m-term approximation, the construction of
efficient adaptive representation, the construction of the curvelet frame,
and a crude analysis of the performance of curvelet schemes.

§1. Introduction

In many important imaging applications, images exhibit edges — discontinu-
ities across curves. In traditional photographic imaging, for example, this
occurs whenever one object occludes another, causing the luminance to un-
dergo step discontinuities at boundaries. In biological imagery, this occurs
whenever two different organs or tissue structures meet.

In image synthesis applications, such as CAD, there is no problem in deal-
ing with such discontinuities, because one knows where they are and builds the
discontinuities into the representation by specially adapting the representation
— for example, inserting free knots, or adaptive refinement rules.

In image analysis applications, the situation is different. When working
with real rather than synthetic data, one of course doesn’t ‘know’ where these
edges are; one only has a digitized pixel array, with potential imperfections
caused by noise, by blurring, and of course by the unnatural pixelization
of the underlying continuous scene. Hence the typical image analyst only
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has recourse to representations which don’t ‘know’ about the existence and
geometry of the discontinuities in the image.

The success of discontinuity-adapting methods in CAD and related image
synthesis fields creates a temptation for an image analyst — a temptation to
spend a great deal of time and effort importing such ideas into image analysis.
Almost everyone we know has yielded to this temptation in some form, which
creates a possibility for surprise.

Oracles and ideally-adapted representation

One could imagine an ideally-privileged image analyst who has recourse to
an oracle able to reveal the positions of all the discontinuities underlying the
image formation. It seems natural that this ideally-privileged analyst could
do far better than the normally-endowed analyst who knows nothing about
the position of the discontinuities in the image.

To elaborate this distinction, we introduce terminology borrowed from
fluid dynamics, where ‘edges’ arise in the form of fronts or shock fronts.

A Lagrangian representation is constructed using full knowledge of the intrinsic
structure of the object and adapting perfectly to that structure.

e In fluid dynamics this means that the fluid flow pattern is known, and
one constructs a coordinate system which ‘flows along with the particles’,
with coordinates mimicking the shape of the flow streamlines.

e In image representation this could mean that the edge curves are known,
and one constructs an image representation adapted to the structure of
the edge curves. For example, one might construct a basis with disconti-
nuities exactly where the underlying object has discontinuities.

An Eulerian representation is fixed, constructed once and for all. It is non-
adaptive — having nothing to do with the known or hypothesized details of
the underlying object.

¢ In fluid dynamics, this would mean a usual euclidean coordinate system,
one that does not depend in any way on the fluid motion.

¢ In image representation, this could mean that the representation is some
fixed coordinate representation, such as wavelets or sinusoids, which does
not change depending on the positions of edges in the image.

It is quite natural to suppose that the Lagrangian perspective, when it is
available, is much more powerful that the Eulerian one. Having the privilege of
‘inside information’ about the position of important geometric characteristics
of the solution seems a priori rather valuable. In fact, this position has
rather a large following. Much recent work in computational harmonic analysis
(CHA) attempts to find bases which are optimally adapted to the specific
object in question [7,10,11]; in this sense much of the ongoing work in CHA
is based on the presumption that the Lagrangian viewpoint is best.

In the setting of edges in images, there has, in fact, been considerable
interest in the problem of developing representations which are adapted to
the structure of discontinuities in the object being studied. The (equivalent)
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concepts of probing and minimum entropy segmentation are old examples of this:
wavelet systems which are specifically constructed to allow discontinuities in
the basis elements at specific locations [8,9]. More recently, we are aware
of much informal unpublished or preliminary work attempting to build 2D
edge-adapted schemes; we give two examples.

o Adaptive triangulation aims to represent a smooth function by partition-
ing the plane into a sequence of triangular meshes, refining the meshes
at one stage to create finer meshes at the next stage. One represents the
underlying object using piecewise linear functions supported on individ-
ual triangles. It is easy to see how, in an image synthesis setting, one
can in principle develop a triangulation where the triangles are arranged
to track a discontinuity very faithfully, with the bulk of refinement steps
allocated to refinements near the discontinuity, and one obtains very ef-
fective representation of the object. It is not easy to see how to do this
in an image analysis setting, but one can easily be persuaded that the
development of adaptive triangulation schemes for noisy, blurred data is
an important and interesting project.

e In an adaptively warped wavelet representation, one deforms the under-
lying image so that the object being analyzed has all its discontinuities
aligned purely horizontal or vertical. Then one analyzes the warped ob-
ject in a basis of tensor-product wavelets where elements take the form
k(1) - ¥y 4 (x2). This is very effective for objects which are smooth
apart from purely horizontal and purely vertical discontinuities. Hence,
the warping deforms the singularities to render the the tensor product
scheme very effective. It is again not easy to see how adaptive warping
could work in an image analysis setting, but one is easily persuaded that
development of adaptively warped representations for noisy, blurred data
is an important and interesting project.

Activity to build such adaptive representations is based on an article of faith:
namely, that Eulerian approaches are inferior, that oracle-driven Lagrangian
approaches are ideal, and that one should, in an image analysis setting, mimic
Lagrangian approaches, attempting empirically to estimate from noisy, blurred
data the information that an oracle would supply, and build an adaptive rep-
resentation based on that information.

Quantifying rates of approximation

In order to get away from articles of faith, we now quantify performance, using
an asymptotic viewpoint.

Suppose we have an object supported in [0, 1]2 which has a discontinuity
across a nice curve I', and which is otherwise smooth. Then using a standard
Fourier representation, and approximating with fZ built from the best m
nonzero Fourier terms, we have

If = FRllf = m™2, m— co. (1)
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This rather slow rate of approximation is improved upon by wavelets. The
approximant f¥ built from the best m nonzero wavelet terms satisfies

If =Ffmllz=m™,  m—co. (2)

This is better than the rate of Fourier approximation, and, until now, is the
best published rate for a fixed non-adaptive method (i.e. best published result
for an ‘Eulerian viewpoint’).

On the other hand, we will discuss below a method which is adapted to
the object at hand, and which achieves a much better approximation rate
than previously known ‘nonadaptive’ or ‘Eulerian’ approaches. This adaptive
method selects terms from an overcomplete dictionary and is able to achieve

If = Fall xm™2,  m— co. (3)

Roughly speaking, the terms in this dictionary amount to triangular wedges,
ideally fitted to approximate the shape of the discontinuity.

Owing to the apparent trend indicated by (1)-(3) and the prevalence of
the puritanical belief that ‘you can’t get something for nothing’, one might
suppose that inevitably would follow the

Folk-Conjecture/[Folk-Theorem)]. The result (3) for adaptive representa-
tions far exceeds the rate of m-term approximation achievable by fixed non-
adaptive representations.

This conjecture appeals to a number of widespread beliefs:

o the belief that adaptation is very powerful,

o the belief that the way to represent discontinuities in image analysis is to
mimic the approach in image synthesis,

e the belief that wavelets give the best fixed nonadaptive representation.

In private discussions with many respected researchers we have many
times heard expressed views equivalent to the purported Folk-Theorem.

The surprise

It turns out that performance almost equivalent to (3) can be achieved by a
nonadaptive scheme. In other words, the Folk-Theorem is effectively false.

There is a tight frame, fixed once and for all nonadaptively, which we call
a frame of curvelets, which competes surprisingly well with the ideal adaptive
rate (3). A very simple m-term approximation — summing the m biggest terms
in the curvelet frame expansion — can achieve

If = FRl3 < C-m™2(logm)®,  m — oo, (4)

which is nearly as good as (3) as regards asymptotic order. In short, in a
problem of considerable applied relevance, where one would have thought that
adaptive representation was essentially more powerful than fired nonadaptive
representation, it turns out that a new fized nonadaptive representation is es-
sentially as good as adaptive representation, from the point of view of asymp-
totic m-term approzimation errors. As one might expect, the new nonadaptive
representation has several very subtle and distinctive features.
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In this article, we would like to give the reader an idea of why (3) represents
the ideal behavior of an adaptive representation, of how the curvelet frame is
constructed, and of the key elements responsible for (4). We will also attempt
to indicate why curvelets perform for singularities along curves the task that
wavelets perform for singularities at points.

§2. A Precedent: Wavelets and Point Singularities

We mention an important precedent — a case where a nonadaptive scheme is
roughly competitive with an ideal adaptive scheme. Suppose we have a piece-
wise polynomial function f on the interval [0, 1}, with jump discontinuities at
several points.

An obvious adaptive representation is to fit a piecewise polynomial with
breakpoints at the discontinuities. If there are P pieces and each polynomial
is of degree < D, then we need only keep P - (D + 1) coefficients and P — 1
breakpoints to exactly represent this function. Common sense tells us that
this is the natural, and even, the ideal representation for such a function.

To build this representation, we need to know locations of the discontinu-
ities. If the measurements are noisy or blurred, and if we don’t have recourse
to an oracle, then we can’t necessarily build this representation.

A less obvious but much more robust representation is to take a nice
wavelet transform of the object, and keep the few resulting nonzero wavelet
coefficients. If we have an N-point digital signal f(¢/N), 1 < ¢ < N, and
we use Daubechies wavelets of compact support, then there are no more than
C -logy(N) - P - (D + 1) nonzero wavelet coeflicients for the digital signal.

In short, the nonadaptive representation needs only to keep a factor
Clogy(N) more data to give an equally faithful representation.

We claim that this phenomenon is at least partially responsible for the
widespread success of wavelet methods in data compression settings. One can
build a single fast transform and deal with a wide range of different f, with
different discontinuity sets, without recourse to an oracle.

In particular, since one almost never has access to an oracle, the nat-
ural first impulse of one committed to the adaptive viewpoint would be to
‘estimate’ the break points — i.e. to perform some sort of edge detection. Un-
fortunately this is problematic when one is dealing with noisy blurred data.
Edge detection is a whole topic in itself which has thousands of proposed so-
lutions and (evidently, as one can see from the continuing rate of publication
in this area) no convincing solution.

In using wavelets, one does not need edge detectors or any other prob-
lematic schemes, one simply extracts the big coefficients from the transform
domain, and records their values and positions in an organized fashion.

We can lend a useful perspective to this phenomenon by noticing that the
discontinuities in the underlying f are point singularities, and we are saying
that wavelets need in some sense at most log(n) coefficients to represent a
point singularity out to scale 1/n.
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It turns out that even in higher dimensions, wavelets have a near-ideal
ability to represent objects with point singularities.

The two-dimensional object fg(z1,z2) = 1/((z1 — 1/2)% + (z2 — 1/2)%)#
has, for 8 < 1/2, a square-integrable singularity at the point (1/2,1/2) and is
otherwise smooth. At each level of the 2D wavelet pyramid, there are effec-
tively only a few wavelets which ‘feel’ the point singularity, other coefficients
being effectively negligible. In approximation out to scale 1/n, only about
O(log(n)) coefficients are required.

Another approach to understanding the representation of singularities,
which is not limited by scale, is to consider rates of decay of the countable
coefficient sequence. Analysis of wavelet coefficients of fz shows that for any
desired rate p, the N-th largest coefficient can be bounded by C, N~ for all
N. In short, the wavelet coefficients of such an object are very sparse.

Thus we have a slogan: wavelets perform very well for objects with point
singularities in dimensions 1 and 2.

§3. Failure of Wavelets on Edges

We now briefly sketch why wavelets, which worked surprisingly well in repre-
senting point discontinuities in dimension 1, are less successful dealing with
‘edge’ discontinuities in dimension 2.

Suppose we have an object f on the square [0, 1]? and that f is smooth
away from a discontinuity along a C? curve I'. Let’s look at the number of
substantial wavelet coefficients.

A grid of squares of side 277 by 277 has order 27 squares intersecting T".
At level j of the two-dimensional wavelet pyramid, each wavelet is localized
near a corresponding square of side 277 by 277, There are therefore O(27)
wavelets which ‘feel’ the discontinuity along I'. Such a wavelet coefficient is
controlled by

1 ik )|l S M flloo - 15 ko 12 < €277,

and in effect no better control is available, since the object f is not smooth
within the support of 1 x, &, [14]. Therefore there are about 27 coefficients of
size about 277. In short, the N-th largest wavelet coefficient is of size about
1/N. The result (2) follows.

We can summarize this by saying that in dimension 2, discontinuities
across edges are spatially distributed; because of this they can interact rather
extensively with many terms in the wavelet expansion, and so the wavelet
representation is not sparse.

In short, wavelets do well for point singularities, and not for singularities
along curves. The success of wavelets in dimension 1 derived from the fact
that all singularities in dimension 1 are point singularities, so wavelets have
a certain universality there. In higher dimensions there are more types of
singularities, and wavelets lose their universality.

For balance, we need to say that wavelets do outperform classical meth-
ods. If we used sinusoids to represent an object of the above type, then we
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have the result (1), which is far worse than that provided by wavelets. For
completeness, we sketch the argument. Suppose we use for ‘sinusoids’ the
complex exponentials on [, 7|2, and that the object f tends smoothly to
zero at the boundary of the square [0,1]?, so that we may naturally extend
it to a function living on [, 7]?. Now typically the Fourier coefficients of
an otherwise smooth object with a discontinuity along a curve decay with
wavenumber as |k|~3/2 (the very well-known example is f = indicator of a
disk, which has a Fourier transform described by Bessel functions). Thus
there are about R? coefficients of size > ¢ - R™3/2, meaning that the N-th
largest is of size > ¢- N=3/4) from which (1) follows.

In short: neither wavelets nor sinusoids really sparsify two-dimensional
objects with edges (although wavelets are better than sinusoids).

§4. Ideal Representation of Objects with Edges

We now consider the optimality result (3), which is really two assertions. On
the one hand, no reasonable scheme can do better than this rate. On the
other hand, there is a certain adaptive scheme, with intimate connections to
adaptive triangulation, which achieves it. For more extensive discussion see
[10,11,13].

In talking about adaptive representations, we need to define terms care-
fully, for the following reason. For any f, there is always an adaptive repre-
sentation of f that does very well: namely the orthobasis ¥ = {1, v1,...}
with first element ¥ = f/||f]l2! This is, in a certain conception, an ‘ideal
representation’ where each object requires only one nonzero coefficient. In a
certain sense it is a useless one, since all information about f has been hidden
in the definition of representation, so actually we haven’t learned anything.
Most of our work in this section is in setting up a notion of adaptation that
will free us from fear of being trapped at this level of triviality.

Dictionaries of atoms

Suppose we are interested in approximating a function in L?(T'), and we have a
countable collection D = {¢} of atoms in L?(T); this could be a basis, a frame,
a finite concatenation of bases or frames, or something even less structured.

We consider the problem of m-term approximation from this dictionary,
where we are allowed to select m terms @1, ..., ¢, from D and we approximate
f from the L2-closest member of the subspace they span:

fm = Proj{flspan(¢s, ..., ém)}.
We are interested in the behavior of the m-term approximation error
em(f; D) = ||f = fmll3,

where in this provisional definition, we assume fm is a best approximation of
this form after optimizing over the selection of m terms from the dictionary.
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However, to avoid a trivial result, we impose regularity on the selection
process. Indeed, we allow rather arbitrary dictionaries, including ones which
enumerate a dense subset of L?(T'), so that in some sense the trivial result
é1 = f/lIfllz2 em = 0, Vm is always a lurking possibility. To avoid this
possibility we forbid arbitrary selection rules. Following [10] we propose

Definition. A sequence of selection rules (o, (-)) choosing m terms from a
dictionary D,
Um(f) = (¢1, s a¢m)y

is said to implement polynomial depth search if there is a single fixed enumer-
ation of the dictionary elements and a fixed polynomial 7(t) such that terms
in 0., (f) come from the first m(m) elements in the dictionary.

Under this definition, the trivial representation based on a countable
dense dictionary is not generally available, since in any fixed enumeration,
a decent 1-term approximation to typical f will typically be so deep in the
enumeration as to be unavailable for polynomial-depth selection. (Of course,
one can make this statement quantitative, using information-theoretic ideas).

More fundamentally, our definition not only forbids trivialities, but it
allows us to speak of optimal dictionaries and get meaningful results. Starting
now, we think of dictionaries as ordered, having a first element, second element,
etc., so that different enumerations of the same collection of functions are
different dictionaries. We define the m-optimal approximation number for
dictionary D and limit polynomial 7 as

em(f; D5m) = |f = i3,

where f,, is constructed by optimizing the choice of m atoms among the first
7(m) in the fixed enumeration. Note that we use squared error for comparison
with (1)-(3) in the Introduction.

Approximating classes of functions

Suppose we now have a class F of functions whose members we wish to ap-
proximate. Suppose we are given a countable dictionary D and polynomial
depth search delimited by polynomial =(-}.

Define the error of approximation by this dictionary over this class by

em( ) xfnea}{e (f;D, )

We may find, in certain examples, that we can establish bounds
em(F; D, 1) = O(m™*), m — 00,

for all p < p*. At the same time, we may have available an argument showing
that for every dictionary and every polynomial depth search rule delimited by
7!'(-), .

em(F;D,m) > cem™? | m > mo(7).
Then it seems natural to say that p* is the optimal rate of m-term approxi-
mation from any dictionary when polynomial depth search delimited by = ().
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Starshaped objects with C? boundaries

We define Star-Set?(C), a class of star-shaped sets with C%-smooth bound-
aries, by imposing regularity on the boundaries using a kind of polar coor-
dinate system. Let p(#) : [0,2m) — [0,1] be a radius function and b, =
(21,0, %2,0) be an origin with respect to which the set of interest is star-shaped.
With 6;(z) = z; — 0, i = 1,2, define functions 8(z1,z2) and r(z1,z2) by

6 = arctan(—8,/61); r = ((61)% + (82)%)/2.
For a starshaped set, we have (z1,z2) € B iff 0 < 7 < p(6). Define the class
Star-Set?(C) of sets by
gl g5 <SP0 <5, BE0m), peCIH6) < O}
10°10° 7 10 ~ -2 R h ’ =70
and consider the corresponding functional class

Star?(C) = {f = 1p: B € Star-Set’(C)}.
The following lower rate bound should be compared with (3).

{B:BC]|

Lemma. Let the polynomial n(-) be given. There is a constant ¢ so that, for
every dictionary D,
1

c—————m2 log(m)’ m — 00.

em(Star®(C); D, 7) >

This is proved in [10] by the technique of hypercube embedding. Inside
the class Starz(C) one can embed very high-dimensional hypercubes, and the
ability of a dictionary to represent all members of a hypercube of dimension n
by selecting m < n terms from a subdictionary of size 7(m) is highly limited
if 7(m) grows only polynomially.

For each f, a corresponding orthobasis is adaptively constructed in [13]
which achieves the rate (3). It tracks the boundary of B at increasing accuracy
using a sequence of polygons; in fact these are n-gons connecting equispaced
points along the boundary of B, for n = 2. The difference between n-gons
for n = 29 and n = 2/*! is a collection of thin triangular regions obeying
width ~ length?; taking the indicators of each region as a term in a basis,
one gets an orthonormal basis whose terms at fine scales are thin triangular
pieces. Estimating the coefficient sizes by simple geometric analysis leads to
the result (3). In fact, [13] shows how to do this under the constraint of
polynomial-depth selection, with polynomial Cm”.

Although space constraints prohibit a full explanation, our polynomial-
depth search formalism also makes perfect sense in discussing the warped
wavelet representations of the Introduction. Consider the noncountable ‘dic-
tionary’ of all wavelets in a given basis, with all continuum warpings applied.
Notice that for wavelets at a given fixed scale, warpings can be quantized with
a certain finite accuracy. Carefully specifying the quantization of the warping,
one obtains a countable collection of warped wavelets, for which polynomial
depth search constraints make sense, and which is as effective as adaptive
triangulation, but not more so. Hence (3) applies to (properly interpreted)
deformation methods as well.
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§5. Curvelet Construction

We now briefly describe the curvelet construction. It is based on combining
several ideas, which we briefly review:

¢ Ridgelets, a method of analysis suitable for objects with discontinuities
across straight lines.

o Multiscale Ridgelets, a pyramid of windowed ridgelets, renormalized and
transported to a wide range of scales and locations.

¢ Bandpass Filtering, a method of separating an object into a series of dis-
joint scales.

We briefly describe each idea in turn, and then their combination.

Ridgelets

The theory of ridgelets was developed in the Ph.D. Thesis of Emmanuel
Candeés (1998). In that work, Candés showed that one could develop a system
of analysis based on ridge functions

Pab,o(T1,T2) = a“1/2¢((z1 cos(8) + x4 sin(8) — b)/a). (5)

He introduced a continuous ridgelet transform Ry(a,b,8) = (¢q,6(z), f) with
a reproducing formula and a Parseval relation. He also constructed frames,
giving stable series expansions in terms of a special discrete collection of ridge
functions. The approach was general, and gave ridgelet frames for functions
in L2[0,1]¢ in all dimensions d > 2 — For further developments, sec [3,5).

Donoho [12] showed that in two dimensions, by heeding the sampling pat-
tern underlying the ridgelet frame, one could develop an orthonormal set for
L?(R?) having the same applications as the original ridgelets. The orthonor-
mal ridgelets are convenient to use for the curvelet construction, although it
seems clear that the original ridgelet frames could also be used. The ortho-
ridgelets are indexed using A = (4, k, ¢, ¢, €}, where j indexes the ridge scale, k
the ridge location, ¢ the angular scale, and £ the angular location; € is a gender
token. Roughly speaking, the ortho-ridgelets look like pieces of ridgelets (5)
which are windowed to lie in discs of radius about 2¢; 6; ¢ = £/2' is roughly
the orientation parameter, and 277 is roughly the thickness.

A formula for ortho-ridgelets can be given in the frequency domain

PA(E) = €172 (P (1€1)wS o(8) + s (€D wE (6 + m))/2 .

Here the 1;,x are Meyer wavelets for R, wf , are periodic wavelets for [~,7),
and indices run as follows: j,k € 7ZZ, £=0,...,2"' —1; 4 > 1, and, if e = 0,
i = max(1,7), while if e = 1, i > max(1,5). We let A be the set of such A.
The formula is an operationalization of the ridgelet sampling principle:

e Divide the frequency domain in dyadic coronae |¢] € [27,27+1].
e In the angular direction, sample the j-th corona at least 27 times.
¢ In the radial frequency direction, sample behavior using local cosines.
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The sampling principle can be motivated by the behavior of Fourier trans-
forms of functions with singularities along lines. Such functions have Fourier
transforms which decay slowly along associated lines through the origin in the
frequency domain. As one traverses a constant radius arc in Fourier space,
one encounters a ‘Fourier ridge’ when crossing the line of slow decay. The
ridgelet sampling scheme tries to represent such Fourier transforms by using
wavelets in the angular direction, so that the ‘Fourier ridge’ is captured neatly
by one or a few wavelets. In the radial direction, the Fourier ridge is actu-
ally oscillatory, and this is captured by local cosines. A precise quantitative
treatment is given in [4].

Multiscale ridgelets

Think of ortho-ridgelets as objects which have a “length” of about 1 and a
“width” which can be arbitrarily fine. The multiscale ridgelet system renor-
malizes and transports such objects, so that one has a system of elements at
all lengths and all finer widths.

In a light mood, we may describe the system impressionistically as “brush
strokes” with a variety of lengths, thicknesses, orientations and locations.

The construction employs a nonnegative, smooth partition of energy
function w, obeying Zkhkz w?(zy — k1,22 — ko) = 1. Define a transport
operator, so that with index @ indicating a dyadic square @ = (s, k1, k2)
of the form [k1/2°, (ks + 1)/2°) x [ka/2°%, (k2 + 1)/2%), by (Tgf)(z1,22) =
F(2°z1 — k1,252 — k2). The Multiscale Ridgelet with index g = (@, M) is then

b =2°-To(w - pa).

In short, one transports the normalized, windowed ortho-ridgelet.
Letting Q; denote the dyadic squares of side 27°, we can define the
subcollection of Monoscale Ridgelets at scale s:

Mo ={(@QN\): Qe Q)€ A}

Orthonormality of the ridgelets implies that each system of monoscale ridgelets
makes a tight frame, in particular obeying the Parseval relation

> (W £)2 = 112

HEM,
It follows that the dictionary of multiscale ridgelets at all scales, indexed by
M= UleMsa

is not frameable, as we have energy blow-up:

> W 1) = 0. (6)

neM
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The Multiscale Ridgelets dictionary is simply too massive to form a good ana-
lyzing set. It lacks inter-scale orthogonality — (g, ) is not typically orthogonal
to P(or, a1y if @ and Q' are squares at different scales and overlapping loca-
tions. In analyzing a function using this dictionary, the repeated interactions
with all different scales causes energy blow-up (6).

Our construction of curvelets solves (6) by disallowing the full richness of
the Multiscale Ridgelets dictionary. Instead of allowing ‘brushstrokes’ of all
different ‘lengths’ and ‘widths’, we allow only those where width ~ length?.

Subband filtering

Our solution to the ‘energy blow-up’ (6) is to decompose f into subbands using
standard filterbank ideas. Then we assign one specific monoscale dictionary
M to analyze one specific (and specially chosen) subband.

We define coronae of frequencies |¢| € [22%,2%5+2], and subband filters A,
extracting components of f in the indicated subbands; a filter Py deals with
frequencies |£| < 1. The filters decompose the energy exactly into subbands:

IF13 = IPoS1I5 + D HAGFI3.

The construction of such operators is standard [15]; the coronization oriented
around powers 22° is nonstandard ~ and essential for us. Explicitly, we build a
sequence of filters @9 and ¥y, = 245¥(22%.), s = 0,1,2,... with the following
properties: ®; is a lowpass filter concentrated near frequencies |£| < 1; Wo, is
bandpass, concentrated near || € [22¢,225%2]; and we have

[Bo(&)P+ D [T >¢)P =1, V&

s>0
Hence, A; is simply the convolution operator A f = Uy, * f.

Definition of curvelet transform

Assembling the above ingredients, we are able to sketch the definition of the
Curvelet transform. We let M’ consist of M merged with the collection of
integral pairs (k1, k2) indexing unit-side squares in the plane.

The curvelet transform is a map L?(R?) + £2(M'), yielding Curvelet
coefficients (o, : p € M’). These come in two types. At coarse scale we have
wavelet scaling function coefficients

oy = Pk ko Pof)y, 1= (k1 k2) € M\ M,

where ¢, i, is the Lemarié scaling function of the Meyer basis, while at fine
scale we have Multiscale Ridgelets coefhicients of the bandpass filtered object:

auz(Asfv"[’p)y pEM,s=12....
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Note well that each coefficient associated to scale 27° derives from the subband
filtered version of f — A; f — and not from f. Several properties are immediate:

e Tight Frame:
I£113 = Z |a#|2.
HeM'
o Existence of Coefficient Representers (Frame Elements):
oy = (f,7)-

e L2 Reconstruction Formula:

F=> {f 1)

peM’

e Formula for Frame Elements:

Yo = As"//‘ua pE Qs

In short, the curvelets are obtained by bandpass filtering of Multiscale
Ridgelets with passband is rigidly linked to the scale of spatial localization

o Anisotropy Scaling Law: Linking the filter passband |¢| = 2%° to the
spatial scale 27° imposes that (1) most curvelets are negligible in norm
(most multiscale ridgelets do not survive the bandpass filtering A,); (2)
the non-negligible curvelets obey length ~ 2~° while width ~ 2-25. So
the system obeys approximately the scaling relationship

width ~ length?.
Tt is here that the 22° coronization scheme comes into play.

§6. Why Should This Work?

The curvelet decomposition can be equivalently stated in the following form:

e Subband Decomposition. The object f is filtered into subbands:

£ (Pof, Aaf, Baf,y. . )-

e Smooth Partitioning. Each subband is smoothly windowed into “squares”
of an appropriate scale:

Asf - (wohsf)geo,-

o Renormalization. Each resulting square is renormalized to unit scale

90 =27°%(Tp) H(wedsf), Q€Q,.
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o Ridgelet Analysis. Each square is analyzed in the ortho-ridgelet system

ap=(99,m),  p=(Q,N).

We can now give a crude explanation of why the main result (4) holds.
Effectively, the bandpass images A, f are almost vanishing at z far from the
edges in f. Along edges, the bandpass images exhibit ridges of width ~ 272¢
— the width of the underlying bandpass filter.

The partitioned bandpass images are broken into squares of side 275 x27%.
The squares which do not intersect edges have effectively no energy, and we
ignore them. The squares which do intersect edges result from taking a nearly-
straight ridge and windowing it. Thus the squares which ‘matter’ exhibit
tiny ridge fragments of aspect ratio 27° by 272%. After renormalization, the
resulting g exhibits a ridge fragment of about unit length and of width 27°.
The ridge fragment is then analyzed in the ortho-ridgelet system, which should
(we hope) yield only a few significant coefficients.

In fact, simple arguments of size and order give an idea how the curvelet
coefficients roughly behave. We give an extremely loose description.

First, at scale 27¢, there are only about O(2°%) squares Q € Q, that
interact with the edges. Calculating the energy in such a square using the size
of the support and the height of the ridge leads to

(length - width)!/? - height ~ (27° x 272%)1/2 x 1.
Indeed, the height of the ridge is bounded by
1Asflloo = 125 * Flloo < [ @2sll1]l flloo = 1E]1]I flloo-

Since we are interested in uniformly bounded functions f, the height is thus
bounded by a constant C. The calculation of the norm ||gg||2 = 273/2 follows
immediately (because of the renormalization, the height of the ridge g¢ is now
27%) . Now temporarily suppose that for some fixed K not depending on @,

each ridge fragment gg is a sum of at most K ortho-ridgelets. (7N
This would imply that at level s we have a total number of coefficients
0O(2°) squares which ‘matter’ x Kcoefficients/square,
while the norm estimate for gg and the orthonormality of ridgelets give
coefficient amplitude < C - 2735/2,

The above assumptions imply that the N-th largest curvelet coefficient is of
size < C - N~3/2. Letting la|(ny denote the N-th coefficient amplitude, the
tail sum of squares would obey

> lelfyy < C-m™2, (8)

N>m
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This coefficient decay leads to (4) as follows. Let y1,..., tm, enumerate
indices of the m largest curvelet coefficients. Build the m-term approximation

m

fC

fm = Z Qpi Vi
i=1

By the tight frame property,

If - ffill"’ < Z Ial%N),S C-m~2,
N=m+1

where the last step used (8). This of course would establish (4) — in fact
something even stronger, something fully as good as (3).

However, we have temporarily assumed (7) — which is not true. Each
ridge fragment generates a countable number of nonzero ridgelet coefficients
in general. The paper [6] gets (4) using much more subtle estimates.

§7. Discussion
Why call these things curvelets?

The visual appearance of curvelets does not match the name we have given
them. The curvelets waveforms look like brushstrokes; brushlets would have
been an appropriate name, but it was taken already, by F. Meyer and R.
Coifman, for an unrelated scheme (essentially, Gabor Analysis).

Our point of view is simply that curvelets exemplify a certain curve scaling
law, width = length?, which is naturally associated to curves.

A deeper connection between curves and curvelets was alluded to in our
talk at Curves and Surfaces ’99. Think of a curve in the plane as a distribu-
tion supported on the curve, in the same way that a point in the plane can
be thought of as a Dirac distribution supported on that point. The curvelets
scheme can be used to represent that distribution as a superposition of func-
tions of various lengths and widths obeying the scaling law width = length?.
In a certain sense this is a near-optimal representation of the distribution.

The analogy and the surprise

Sections 2 and 3 showed that wavelets do surprisingly well in representing
point singularities. Without attempting an explicit representation of ‘where
the bad points are’, wavelets do essentially as well as ideal adaptive schemes
in representing the point singularities.

Sections 4-6 showed that the non-adaptive curvelets representation can
do nearly as well in representing objects with discontinuities along curves as
adaptive methods that explicitly track the shape of the discontinuity and use
a special adaptive representation dependent on that tracking.

We find it surprising and stimulating that the curvelet representation
can work so well despite the fact that it never constructs or depends on the
existence of any ‘map’ of the discontinuity set.

We also find it interesting that there is a system of analysis which plays
the role for curvilinear singularities that wavelets play for point singularities.



120 E. J. Candés and D. L. Donoho

Acknowledgments. This research was supported by National Science Foun-
dation grants DMS 98-72890 (KDI), DMS 95-05151, and by AFOSR MURI
95-P49620-96-1-0028.

References

1. Candés, E. J., Harmonic analysis of neural networks, Appl. Comput. Har-
mon. Anal. 6 (1999), 197-218.

2. Candes, E. J., Ridgelets: theory and applications, Ph.D. Thesis, Statistics,
Stanford, 1998.

3. Candes, E. J., Monoscale ridgelets for the representation of images with
edges, Technical Report, Statistics, Stanford, 1999.

4. Candes, E. J., On the representation of mutilated Sobolev functions, Tech-
nical Report, Statistics, Stanford, 1999.

5. Candes, E. J., and D. L. Donoho, Ridgelets: The key to high-dimensional
intermittency? Phil. Trans. R. Soc. Lond. A. 357 (1999), 2495-2509.

6. Candes, E. J., and D. L. Donoho, Curvelets, Manuscript, 1999.

7. Coifman, R. R., and M. V. Wickerhauser, Entropy-based algorithms for
best basis selection, IEEE Trans. Inform. Theory 38 (1992), 1713-1716.

8. Deng, B., B. Jawerth, G. Peters, and W. Sweldens, Wavelet probing for
compression-based segmentation, in Proc. SPIE Symp. Math. Imaging:
Wavelet Applications in Signal and Image Processing, 1993. Proceedings
of SPIE conference July 1993, San Diego.

9. Donoho, D. L., Minimum entropy segmentation, in Wavelets: Theory,
Algorithms and Applications, C. K. Chui, L. Montefusco and L. Puccio
(eds.), Academic Press, San Diego, 1994, 233-270.

10. Donoho, D. L., and 1. M. Johnstone, Empirical Atomic Decomposition,
Manuscript, 1995.

11. Donoho, D. L., Wedgelets: nearly minimax estimation of edges, Ann.
Statist. 27 (1999), 859-897.

12. Donoho, D. L., Orthonormal ridgelets and linear singularities, Technical
Report, Statistics, Stanford, 1998, SIAM J. Math. Anal., to appear.

13. Donoho, D. L., Sparse components analysis and optimal atomic decom-
position, Technical Report, Statistics, Stanford, 1998.

14. Meyer, Y., Wavelets and Operators, Cambridge University Press, 1992.

15. Vetterli, M., and J. Kovacevic, Wavelets and Subband Coding, Prentice
Hall, 1995.

Department of Statistics

Stanford University

Stanford, CA 94305-4065, USA

{emmanuel,donoho}@stat .stanford.edu
http://www-stat.stanford.edu/{~emmanuel, ~donoho}/



