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On a Method of Numerical Differentiation

Mira Bozzini and Milvia Rossini

Abstract. In this paper we present a method for the numerical differen-
tiation of two-dimensional functions when scattered data are given. The
method is based on a regularization of the given sample.

§1. Introduction

In this paper we present a method for the numerical differentiation of two-
dimensional functions when scattered data are given. The problem of numer-
ical differentiation is very important when dealing with function approxima-
tion. In fact, a satisfactory recovery of a function given in a sampled form
needs some knowledge of the derivatives.

It is also well known that this problem is ill-conditioned. Consider for
instance, one-dimensional equispaced data with h, = 101 and h 2 = 2P. On a
computer, because of the base change, numerical differentiation gives consid-
erable errors in the first case, and a more accurate solution in the second case.
Moreover, it is strongly influenced by the data position.

The literature on scattered data, includes the papers [7,8,10], their im-
provements [3,5], and some experiments on their use [9]. These papers provide
the gradient approximation at the sampled points (see [7,10]) or the approxi-
mation of the gradient function (see [8]). This is done by triangulation or local
and global moving least square interpolation. In some of them, asymptotic
bounds for the error are also supplied.

Generally, these methods provide a satisfactory approximation inside the
domain in which the data are given, but they may give large errors at the
boundary (see Figs. 1-4 below).

In this paper we present a method based on a regularization of the sample
which gives an error with an uniform behaviour on the whole domain in which
the data are assigned. The regularization is done by constructing a new set
on a regular grid. Namely, taking into account the previous observations, we
have considered dyadic grids. Obviously the construction of this new set will
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generate errors that can be thought of as causal errors depending on the sam-
ple. Then (see [4]), to smooth the data, we perform a wavelet decomposition
of the signal. Using the smoothed data, we approximate the gradient at the
grid points by the classical finite centered difference formulas, and finally we
construct a smooth function approximating the unknown gradient.

The paper is organised as follows. In §2 the method is described and
the gradient estimator is constructed. In §3 the convergence properties are
considered. Finally in §4 we discuss some questions related to the numerical
aspects of the problem and we provide some numerical examples.

§2. The Method

Suppose we are given a set of scattered points in a domain Q C R2

S = {Pj*(xj,,yi)i Pj E Q, i= N,.,},

and the set of functional data

F = {(Pj*,f(P*)), i = 1,...,N},

where f(x, y) is an unknown function defined on Q. Without loss of generality,
we suppose Q = [0,1] x [0, 1].

The first step of our method consists in generating, from F, a new set of
functional values, say F, located on a dyadic lattice T of Q,

T= {Pk, k = (k1 ,k 2) E C2 k= 1,...,2,},

that is
1P = {(Pk, f(Pk)), Pk e T}.

It is clear that the new values are affected by errors

j(k) = f(Pk) + e(Pk).

Therefore we need to construct F by an efficient computational method such

that the error is less or of the same order as that generated by the derivative
approximation we will use. A possible strategy is to interpolate the data by a
local method of a suitable order m, m < a (for instance a moving least squares

technique, [6, 8]) which gives a smooth interpolating function f(x, y) C C-m (Q)
with an error e(x, y) = O(hm), where h is a local parameter depending on the
distribution of the points Pj* in Q (usually h = 1/VN).

The new set F can be thought of as a sample coming from a stochastic
process depending on the points P* C S. Then we can use the method de-
scribed in [4] for noisy data. In the next section, we will perform a wavelet
decomposition in order to smooth the errors e, and we will define an estimator
gj(h)(x, y) of the underlying function f(x, y). Then we will approximate the
unknown gradient using the function estimator ýj)(x, y), and the classical
approach of central finite differences.
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In this paper we assume that

i) f(x, y) belongs to an H6lder space of order a > 2 on Q* D Q, say Ca(Q*).

ii) We consider a multiresolution analysis of L2 (1R2) given by the tensor
product of two one-dimensional s-regular multiresolution analysis such
that the scaling function 0 is a coiflet, that is a compactly supported
orthonormal function such that the scaling function O(x) and the wavelet
O(x) have L - 1 and L, vanishing moments respectively. Moreover, we
assume that L > [a] + 1 and s > a.

2.1. The function estimator

As mentioned above, for approximating the gradient of f(x, y), we will use
the function j (F)(x, y) defined as in [4]. In this section we briefly describe its
definition and the motivations that lead to consider this function.

It is known that when we perform a MRA using data given on a subset of
R 2 , we need to take into account the problem of reducing the boundary errors.
To this end, we consider a function g(x, y) E Ca(1 2 ) compactly supported
on Q* D Q such that

g(x,y) = f(x,y), V(x,y) E Q,

and a new dyadic lattice T* on Q* of dimension 2' x 2', such that T* -
{T U { points sampled in Q* \ Q}}. Moreover, the advantage of the nested
structure of a MRA is that to provide an efficient tree-structure algorithm
for the decomposition of functions in Vn, for which the smoothing coefficients
(g, I),,,k) are given.

In applications, a function is given in sampled form, and it is therefore
necessary to approximate the projection Pv, on the space V,, by some oper-
ator H,,, and to derive a reasonable estimator of H,, in terms of the sampled
values. The choice of IIH and of its estimator is suggested by the following
facts (see [1,4]).

The set of nonzero coefficients (g, Oi~k) has cardinality equivalent to
0( 22n). Moreover,

(g, 4).n,A) - 2-ng(Pk)[ C2-• 2- ", (1)

where C is a constant depending on the smoothing function ((x, y) and on

g(x,y).
As a consequence, we define

(Hng)(x,y) = 2- T g(Pk)4).,k(x,Y). (2)

PkET*

Since we have data corrupted by the interpolation errors, we consider the
estimator of II,,

(ftng)(x,y) = 2 f(Pk)¢,k(x,y) + E g(Pk)$P,k(x,y)}. (3)

PkET PkET*\T
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This estimator may lead to an oscillatory solution bearing too much fidelity to
the data. Since, for numerical differentiation, we need to correctly smooth the
data, we have to associate to each sample of size 2f x 2f a resolution j(n) < K ,
and to consider the orthogonal projection of (flng)(x, y) onto Vj(jj), that is

gj(o)(x, y) = (PVj(,) fng)(x, y). (4)

The parameter j(fi) governs the smoothness of our estimator, and it is
important to choose it in the right way because it controls the tradeoff between
the fidelity to the data and the smoothness of the resulting solution. From a
theoretical point of view, the smoothing parameter must tend to infinity at
the correct rate, as the amount of information in the data grows to infinity.

2.2. The gradient estimator

We now consider the construction of the gradient estimator. When dealing
with gridded data, it is natural to approximate the gradient using the usual
centered difference formulas. Let

(grad f)(x, y) = (S(X, y), fS(Y)(X, Y)

be the gradient of f(x, y), and let D', DY be the centered difference operators
which use r equispaced points in the x or y direction respectively. If r < [a],
we know that

(D'f)(Pk) = f( t )(Pk) + O(2-n(r-1)), t = {J, y}.

Then, at each point of the lattice T, we approximate (grad f)(Pk) by

(grad f)(Pk) = ((Dn j(C))(Pk), (DyPj(l))(Pk)) . (5)

Using the data (5), it is possible to define, at each point of Q, an estimator of
f(t)(x,y), t = {x,y}, by the operator Hn. Namely, we consider the function

g(x, y), and we define

(grad f)(x, y) =- ((gwI())(x, y), (1I,,g(Y))(x, y)) , (6)

where

(fJ,,g(t))(x'Y) = z- (Drjg(n))(Pk)'Pn,k(xy)
PkET

+ ZE T ()(PT)4flk(XY)}
PkET* \T
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§3. Asymptotic Properties

Under the assumptions of Section 2, and taking into account the properties
of the projection Pv,, we know that

J(Pv,g)(x,y) - g(x,y)l = 0(2-"), V(x,y) E Q*- (7)

Moreover, from (1) we have

(Hhg)(xy) - (Pv~g)(x,y)[ = 0(2-") V(x,y) EQ*, (8)

then
I(IItg)(x,y) - f(x,y)J = O(2-") V(x,y) E Q. (9)

Using relations (7), (8), (9) and the results stated in [4], we have proved

Proposition 1. If assumptions i) and ii) of Section 2 hold, we have

IJ(n)(x, y) - f(x, y)I = O( 2-j(Fi)`) + 0(h-m ),

for every (x, y) E Q.

Remark 1. This result points out how the choice of j(1h) depends on the
sample dimension N and on m. In fact it has to be chosen so that 2 -j(5)a is
less or of the same order of hm.

Proposition 2. If assumptions i), ii) of Section 2 hold, the approximation
(6) of the gradient satisfies, asymptotically, the following bound

(IftIg(t))(x, y) - f(')(x, y)I =0(2-i(")a) + 0(2-n(r-1))

+o(h m ) + o(2-n(a-1),

for every (x, y) C Q.

§4. Numerical Results

In this section, we discuss some questions related to the computational costs
and to the numerical implementation of the method we have studied. We also
present some numerical results.

4.1. Computational costs

The computational costs are essentially given by the wavelet decomposition
and by the construction of the gridded data set P of dimension 22n. For
the wavelet decomposition, they are at the most of the same order of the
sample dimension, that is 0( 22n). For the construction of F, if we use a local
method of order m < N, they are given by the solution of N linear systems
of dimension 2m + 1. Then the computational costs will be 0(( 2m+1 ) 3 N) +
0(22n).
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4.2. Numerical implementation

In this section we discuss some questions related to the construction of
§j(f,)(x,y) and (Hlng(t))(X,y) . Following the idea of §3.1, we need to extend
the given signal to a suitable square Q* D Q

Q* = [-2-fK, 1 + 2-K] x [-2-fK, 1 + 2-fK],

forcing it to be zero at the Q* boundary. This is necessary in order to avoid
undesirable behaviour at the boundary. The extension can be done following
a method proposed in [2]. Note that K is related to the number of points we
consider outside Q. On one hand, it cannot be chosen too small, otherwise
undesirable boundary oscillations could occur. On the other hand, it depends
on the resolution level j(ii). In fact, it has to be chosen so that the discrete
wavelet decomposition can be performed.

In the numerical examples we have used the coifiets with L = 6 vanishing
moments. For the pointwise gradient approximation, we have used the central
finite difference of order 4 (r = 5).

4.3. Numerical examples

In this paper we present the results achieved for the test functions

fl(x,y) = 0.75 exp[-((9x - 2)2 + (9y - 2)2)/4]

+ 0.75 exp[-((9x + 1)2/49 + (9y + 1)2/10)]

+ 0.5 exp[-((9x - 7)2 + (9y - 3)2)/4]

- 0.2 exp[-((9x - 4)2 + (9y - 7)2)],
1

f 2 (x,y) =

V/(1 + 2 exp(-2 X100x 2 + 10 0y2 - 6.7)

defined on the unit square [0, 1] x [0, 1]. We have considered N scattered points
on Q, and have constructed a new gridded data set F of size 2f x 2f' using
the modified quadratic Shepard method. The smoothing parameter j(n) has
been chosen taking into account Remark 1 of Section 3. Therefore, having
used the modified quadratic Shepard method with A = 5, a possible choice is
j(n) = 4.

We now present our results, and compare them with those obtained with
the method (L-method) proposed in [8] which, among those we find in the
literature, we belive is preferable both for its theoretical aspects and numerical
performance.

The following examples show how the proposed method provides an ap-
proximation which seems to have the same behaviour for the functions con-
sidered, both for graphical results and for errors. For the sake of brevity, we
show only the approximations of one gradient component, but give the relative
errors for both of them.
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Fig. 1. Example 1, N =100. On the left-hand side, the result of our method.
On the right-hand side, the result of the L-method.
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Fig. 2. Example 1. N = 300. On the left-hand side, the results of our method.
On the right-hand side, the result of the L-method.

Example 1. Consider N = 100 and N =300 values of fi (x, y). In Figs. 1
and 2 we present the y-partial derivative approximations. The following table
lists er:= relative error of our method and erL:= relative error of the L-method:

fi N=100 N =300
er erL er erL

ftt  24% 55% 6% 12%
f Y 43% 226% 36% 36%
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Fig. 4. Example 2. N =300. On the left-hand side, the result of our method.
On the right-hand side, the result of the L-method.

Example 2. Consider N 100 and N = 300 values of f2(x, y). In Figs. 3
and 4 we present the results achieved for the y-partial derivative, and in Fig. 5
the error functions for N = 300. The following table lists er:= relative error
of our method, and erL:= relative error of the L-method:

f2 N =100 N = 300
er erL er erL

f x 35% 400% 6% 54%

fy 27% 64% 6% 135%
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Fig* 5. Example 2. N i 300. On the left-hand side, whe error function of our
method. On the right-hand side, the error function of L-method.
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Fig6. Example 2. N 300. The approximation of i2 (x,dy). The absolutemaximum error is 0.015.

Finally, as is usual in the literature, we consider an application to function
recovery which shows the goodness of the gradient approximation. We recover
f2 (x, y) by Hermite interpolation at 16 x 16 nodes, where we interpolate the
data coming from the estimator tje(a)(x, y) and from the approximated gradi-
ent (Fig. 6).
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