
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO 11975
TITLE: Scattered Data Near-Interpolation with Application to
Discontinuous Surfaces

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
France, 1-7 July 1999. Proceedings, Volume 2. Curve and Surface Fitting

To order the complete compilation report, use: ADA399401

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP011967 thru ADPO12009

UNCLASSIFIED



Scattered Data Near-Interpolation with

Application to Discontinuous Surfaces

Renata Besenghi and Giampietro Allasia

Abstract. This paper discusses a particular type of function approxima-
tion on scattered data in a general number of variables, and its application
to surface representation with imposed conditions. If the given function
values are subject to errors, it is not appropriate to interpolate the function
at the data in the sense of exact matching. As a consequence, we formulate
a weakened version of the classical scattered data interpolation problem,
and give a simple and efficient procedure to obtain near-interpolation for-
mulas. Near-interpolants enjoy many remarkable properties, which are
very useful from both theoretical and practical points of view (shape pre-
serving properties, operator positivity, subdivision techniques, parallel and
multistage computation). Applications of near-interpolants to the rep-
resentation of surfaces, in particular with faults, are discussed in detail
(parameter values, localizing weights, etc.).

§1. Introduction

In many applications, the given function values are subject to errors; hence
it is not appropriate to interpolate the function at the data in the sense of
exact matching, but it seems more appropriate to approximate the function
or, more precisely, to get a relaxed interpolation or near-interpolation. Data
requiring near-interpolation by scattered data methods occur in virtually ev-
ery field of science and engineering. Sources include both experimental results
(experiments in chemistry, physics, engineering) and measured values of phys-
ical quantities (meteorology, oceanography, optics, geodetics, mining, geology,
geography, cartography), as well as computational values (e.g., output from
finite element solutions of partial differential equations).

As a consequence of this remark, we formulate a relaxed version of the
classical multivariate interpolation problem at scattered data points.

Curve and Surface Fitting: Saint-Maio 1999 75
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 75-84.
Copyright 02000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1357-3.
All rights of reproduction in any form reserved.



76 R. Besenghi and G. Allasia

Definition 1. Given a set of points S,, = {xi, i = 1,...,n}, distinct and
generally scattered, in a domain D C RS, (s > 1), with associated values
{fi, i = 1,... ,n}, and a linear space 4(D) spanned by continuous real basis
functions gj(x;r) with x E D, r > 0, and j = 1,...,n, the multivariate
near-interpolation problem at scattered data consists in finding a function
F(x; r) E 4(D) such that

n

F(xi;r)= Eajgj(xi;r)= fi+q(r), i= 1,...,n, (1)
j=1

and
lim fi(r) = 0. (2)
r-0

We observe that r works as a parameter, and the limit case of F(x; r) when r
vanishes

F(x) - F(x; 0) = rim F(x; r)

is an interpolation operator. If F(x; r) is specified, then the Ei(r) in (1) are
known; these near-interpolation errors at the nodes must not be confused
with the unknown errors which affect the corresponding function values fi.
However, it is reasonable to get things so that the ci(r) and the errors on fi
are quantities of the same order.

In Section 2 we give a constructive procedure to obtain a wide class of
near-interpolation formulas. These enjoy many interesting properties which
are listed in Section 3. A crucial point in near-interpolation is the proper
choice of the parameter r in (1) and, eventually, of other parameters; the
matter is discussed in Section 4. Finally, Section 5 is devoted to the application
of near-interpolation to modelling faults.

§2. Construction of Near-Interpolants

To solve the classical interpolation problem, one can consider basis functions
which depend on the nodes and, moreover, are cardinal. The method of car-
dinal basis functions involves selecting continuous cardinal functions gj : D --+
PR, (j = 1,... ,n), such that gj(xi) = bij, (i = 1,... ,n), where 6 ij is the
Kronecker delta operator, and setting up the interpolation operator F in the
form

F ?)= jgj(x).

j=1

The corresponding near-interpolation problem considers basis functions
gj(x;r), which are no longer cardinal, but gj(x;r) --+ gj(x) for r -+ 0. If such
gj(x; r) are given, then

n n

F(x;r) = E-fj g,(x;r) = F(x) + fj [gj(x;r) -gj(x)] (3)
j=1 j=1

represents a solution of the near-interpolation problem. In this relation the
terms Ei(r) = F(xi; r) - fi, (i = 1,.. . , n), are uniquely determined and satisfy
(2).
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As an example, let us consider the near-interpolant Shepard's formula in
the product form

n +1
pi(x; r) fj r H~l- 1~ fchd (x, xk) + r]f (4" =- n -k=1,k~h[d (x, Xk) + r], '

where d(x, y) is the Euclidean distance between x and y, and 0 > 0, or in the
equivalent barycentric form

n-Z [d2(x, xj) + r]-
S(X;dr) = _• fjx) + r (x,;O) =f, i= 1,... ,n. (5)j=1 •h=l [d2(X, Xh) + r] -0 '""

This formula no longer interpolates for r > 0, but jI(x; r) -+ p(x) as r -+ 0,
where tt(x) is the well-known Shepard's formula [8, 1].

Examining the structure and the basic idea of Shepard's operator suggests
a simple and efficient procedure to obtain an interpolation formula [1]. The
corresponding way to obtain a near-interpolation formula is contained in

Definition 2. Let c(x,y;r), with x,y E D and r > 0, be a continuous
positive real function such that

lim a(x, y; r) = a(x, y), (6)
r---O

where a(x,y) > 0, ifx 5 y and a(x,y) =0, ifx = y for all x,y E D. Define
now the functions gj (x; r) by the equations

kr)
g1 (x; r) k-ikh CO , Xk; r) ' (7)3 ~ w'_lrj~k-haX X;T

and the near-interpolant F(x; r) by

S• 1-=l'k#j COX'k; r)

F(x;r) f3 gj(x;r) fj nlk r (8)
;Zi=1I'=

=1j=1 Iv1 1kh a(x, Xk; r)

or equivalently by

n 1/a (x, xj; r) _
F(x; r) = E fj rn l a x, h r , F(xi;0)= fi, i= l,...,n. (9)

j=1 •-h~l1aX hr

Many choices are possible for the function a(x, y; r) in (6); there are no
constraints engendered by the set Sn, that is, the distribution of the nodes
is irrelevant. Nevertheless, experience suggests identifying a with a radial
function

a(x, y; r) = 0(lix- VIl2 + r),
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where is a convenient norm. As an example, choosing the Euclidean norm

" 112 and
a(x, y; r) = (lix- _y11 + r)13 , 3> 0, (10)

we obtain from (8) the near-interpolant Shepard's formula (4).
It is often convenient to consider the function o(t; r) : R>O --* R, as-

sociated with ¢(IJx - y112 + r) and defined as W(t; r) = ¢(t 2 + r). We have
just seen W(t; r) = (t2 + r),3 in (10); another possible expression that works is
W(t; r) = (t 2 + r)) exp(-y t 2), (_y > 0). Considering several functions W can be
useful in order to compare their behaviour and choose the most suitable for
use.

§3. Properties of Near-Interpolants

Near-interpolants, as given in Definition 2, enjoy many interesting properties.
We list some of them.

A) The near-interpolant F(x; r) in (8) or (9) is a weighted arithmetic mean
of the values fj, (j = 1,...,n), since 0 < gj(x;r) • 1 and E' lgj(x;r) =

1. As a consequence F(x; r) satisfies the betweeness property mini fi •
F(x; r) • maxi f , and reproduces exactly any constant function f(x) = c,
that is, if fi = c, (i = 1,...,n), then F(x;r) = c. Moreover, F(x;r),
considered as a functional on the set of functions f D --* R, is linear and
positive.

B) If a(x,y;r) is infinitely differentiable with respect to the pth compo-
nent of x = (x(l),...,x(s)) for all x,y E D and p = 1,...,s, then F(x;r) is
also infinitely differentiable with respect to the x(P). For example, choosing
a(x,y;r) as in (10), F(x;r) = pi(x;r) in (4) can be differentiated as many
times as desired.

C) If a is a radial function, F(x; r) enjoys some properties of invariance with
respect to affine transformations. In particular, with the Euclidean norm, we
have that F(x; r) is invariant under translation and rotation, but not scalar
invariant.

D) Subdivision techniques can be applied to near-interpolants achieving re-
markable results, very well suited for parallel computation [3]. Let us make a
partition of the set Sn, on the domain D into q subsets Sn,, so that the jth
subset, (j = 1, .. , q), consists of the nodes X3 l, Xj 2 ,. . . , Xn 3, with nl + n2 +
•.. + nq = n, and the values fjk3 , (j = 1,..., q; kj = 1,...,nj), correspond to

the nodes Xjkj. The indexing of the nodes in the subsets may not depend on
the indexing in the set, provided the biunivocity is saved.

Given Snj = {Xjl,Xj2,... ,xjnj}, (j = 1,... ,q), let Sn = Sn, USn2 U...U
S,, and Snq nf Sr = 0 for q 5 r, then F(x; r) in (9) can be rewritten in the

form

q A4 nw
Fs.(x;r) = •-Fs (x;r) A where j= 1/a(x,xjk,;r). (11)

j=1 Jkj=l
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E) As a consequence of (11) the following multistage procedure works very
well. In the first stage, a given set of nodes Sn, = {xi,i = 1,...,nl} is
considered, and the corresponding near-interpolant Fsn1 (x; r) is evaluated.
In the second stage, it is required to enlarge the considered set Sn, taking
the union of it and another set of nodes Sn, = {xj,j = 1,... , n2}. Now the
near-interpolating function referred to the union set, i.e., Fsný s, 2 (x; r), with
Sn1 n Sn2 = 0, can be obtained simply by evaluating the near-interpolant
Fsn2 (x; r), corresponding to the added set Snr, and using the relation

FS ''USn,(x;r) = FSz (x; r)A1 + Fsn2 (x; r)A 2

A1 + A 2

where A, = E7'i 1/a(x, xi;r), A2 = Zj2l 1/a(x,xj;r), and A 1 is known.
The procedure can be repeated as many times as required.

F) Near-interpolants have the remarkable property that an additional node,
say Xn+l, can be added to the interpolation set Sn by simply combining an
extra term with the original formula. The goal is achieved by using a particular
case of (12), that is, the recurrence relation

Fs,+1 (x;r) = Fs, (x; r)An + fn+1 1/a(x, Xn+l; r)

An + 1/a(x, xn+1;r)

where An = =1 1/a(x, xk;r).

G) 'It is often convenient to extend (8), or better (9), in the following way:

FI(x;r) = E T(X, Xj;-) 1/a(x, xj;r) (13)

where T(x,y;-y), with x,y E D and -y -> 0, is a continuous positive real
function. Choosing suitably T(x,y; ^), one can modify the weights in (13)
in order either to cancel a useless characteristic, or to introduce a new fea-
ture. In particular, it is possible to localize the method considering a factor
T(x, y; -y) rapidly decreasing with distance [2]. The formulas obtained in this
way maintain, in general, the analytical and computational properties of the
corresponding original ones.

The use of the exponential-type function

T(x, y; 7) = exp(-'yllx - y~lI) (14)

is suggested by McLain [4] for Shepard's formula; he observes that much more
accurate results can be obtained in this way. The use of exponential-type
weights increases the computational effort, but generally this drawback can
be tolerated.

The value of the parameter in the mollifying function T(X, y; 7) may de-
pend on the nodes, as happens in the popular case [4]

~ ~~i xj ,j 1 I -X Jll 2
,x X P = (,- P (15)

where pj is the radius of the circle of support at the point xi, and (u)+ > 0
if u > 0, (u)+ = 0 if u < 0.
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H) The precision of the operator F(x;r) can be increased, considering the
Taylor expansion for the function f in each node xj instead of the function
value fj. This leads to the following extension of (9).

If f E Cm (D) and Tj(x) is the truncated Taylor expansion for f up to
derivatives of order m evaluated at the point xj and referred to the displace-
ment hj = x - xj, with hj C D, then the operator

n

F2 (x;r) = ZTj(x) g9(x;r), (16)
j=1

near-interpolates to Tj (x) at x = xj. In this form, F2 (x; r) reproduces exactly
algebraic polynomials of degree < m.

Combining the modifications in (13) and (16), we have
n

F3(x;r) Tj(x) (17)
j=1 Zh 7=T(X, Xh; ') 1/a(x, Xh; r) (

Obviously, the technique calls for additional derivative values that are not
normally available as data. A more practical solution is discussed below.

K) For simplicity, we refer here to an Euclidean radial function a(x, y; r)

0(11x - yJ12 + r), because in this case the procedure is well established. The
primary modifications required involve using T(x, y; y) to localize the overall
approximation, and replacing fS with a suitable "local approximation" to
the surface. To carry out the approximation (17), a practical way is to get,
in a first stage, local approximants MS(x) to f(x) at the points xj, (j =
1,... ,n), obtained by means of the moving weighted least-squares method
using weight functions with reduced compact support. Then, in a second
stage, the near-interpolating operator is expressed as a convex combination of
the local approximants

T(X, xj;-Y) 1/2(11x - x + r)
F 4 (x; r) Mj (x) E r10(r X +r) (18)s=1 h- T•l'(X, xh;Y7) 1¢lX-hl+r 11

In particular, by (18), (10), and (14),

n•. exp(-71Ix - xj112) (11x - x)l11 + r)-1
Pi(x;r) = E Mj(x) 2'-_ ex11----2x- 2hII2) ( 2x - xhI + r)112 (19)

j=1 1_ x ( -IX -X JX -X ) 1

which extends (5).
Very good performance is achieved by a version of (18) which uses quad-

ratic approximations for Mj(x), and mollifying functions given by (15). This
method has been developed by Franke and Nielson [4], and Renka [7] for
Shepard's operator.
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§4. Determining Parameter Values

The near-interpolating operator (19) works very well in a large variety of
cases. Our attention is here focused on finding values of the parameters r, /3
and -y, which can be regarded as "optimal" from a practical viewpoint. The
considerations which follow are mainly based on experiments.

A relatively small increase of the parameter r in (19) in some right neigh-
bourhood of zero has a considerable effect on the behaviour of IL1(x; r). In fact,
if r is small, x fixed and near to the node xj., then the value of gj. (x; r) equals
nearly one; but, if r increases, gj. (x; r) decreases. Since Zt- gj(x; r) = 1,
diminishing of gj. (x; r) makes the other weight values gj (x; r), j j*, in-
crease. Summing up, if the weight attributed to fj. in pi(x;r) decreases,
then ,Il(xj ; r) = fj. + ej. (r) diverges from fj., namely Ej. (r) increases and
reduces the accuracy of/ti(xj- ;r).

Introducing the parameter r in (19), and in particular in (5), has the
effect that, in general, the gradient of the rendered surface is not zero at the
nodes. As a consequence, the surface is considerably smoother than for r = 0.
However, if r is too small, the first derivatives of it, (x; r) are highly oscillating
and their values are nearly zero. Clearly, the goal is to choose an "optimal"
value of r, such that pi (x; r) does not exhibit the characteristic irregularities
of the basic Shepard's formula, but at the same time, it maintains a sufficient
computational accuracy, in particular at the nodes.

The search for the optimal value of r can be done by many applications
of (19) with different values of the parameter, and then by choosing that value
which minimizes the global root mean square error. Although this is currently
considered in the literature, the estimate of r is not a simple matter; in a
sense, it can be compared with the analogous difficult problem of computing
the optimal value of the parameter in multiquadric interpolants.

The optimal value of the parameter 03 has been determined with particular
attention to computational accuracy. The performance analysis on some test
functions proposed by Franke leads to prefer the value /3 = 3/2.

As for the optimal value of the parameter y in the strongly localizing
function (14), McLain has proposed -y = 1.62n/diam(D), where n is the num-
ber of nodes and diam(D) is the diameter of D. However, this value is, in
general, too large, whereas it is sufficient to consider for -t a value of the order
of tens.

§5. Application to Modelling Faults

Using the near-interpolating operator pi1(x; r) of (19), with a suitable value of
the parameter r, instead of the corresponding interpolating operator /1 (x; 0),
increases considerably the performance of the approximation in a rich variety
of applications, because it permits consideration of supplementary information
connected with the characteristics of the examined problem. A typical case
occurs with surface discontinuities, in particular faults, which are frequently
met when modelling geological surfaces.
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Following Shepard [8], we observe that, if some physical barrier such as a
fault separates the set of nodes, the relationship between nodes on the opposite
sides of the barrier may be attenuated. Through the inclusion of barriers, a
user may specify discontinuities in the metric space in which the distance
between two points is calculated to simulate this attenuation. Suppose a
"detour" of length b(x, xk) were required to go over the barrier between x,
the current near-interpolation point, and the node Xk. The quantity b(x, xk)

is considered the strength of the barrier, and an effective distance between x
and Xk is given by

d* (x, Xk)= /[d(x, xk)]2 + [b(x, xk)]2 .

This definition is general so that if no barrier separates x and xk, then
b(x, Xk) = 0 and d*(x, xk) = d(x, Xk). Because of the discontinuity in effective
distance as the near-interpolation point x crosses the barrier, the rendered
surface will be discontinuous at the barrier.

Since extensive tests [4] have shown that the modified quadratic Shepard's
method performs very well for a variety of data sets, Franke and Nielson [5]
have chosen it as a basis to investigate the problem of simulating faults. Our
approach uses instead the near-interpolant (19), with significant differences in
distance penalty, localizing functions, fault forms, etc., as compared to Franke
and Nielson.

The possibility of having to model faults can occur in different ways [5];
to save space, we limit our attention to the following case: there is a known
fault line F C D C R 2 , in a known location, with a known jump. More
complicated situations (see, e.g., [5,6]) require extensive considerations that
will be discussed in a further work.

As a first step, it is convenient to focus on the basic situation in which
the fault line F is a segment 1 and, moreover, the jump is constant along 1.
Then, a known polygonal curve can be considered as a fault line; in fact, the
reduction to the case of a fault line segment is straightforward by using the
subdivision procedure considered in Section 3. In principle, any curve can be
considered as a fault line, provided it is well approximated by a polygonal.
Another extension consists in considering a jump varying along the fault line.
Also the reduction to the basic case is now possible, subdividing the fault line
into a convenient number of segments, and using a mean value of the jump
for each segment.

To deal with the basic case, we modify the value of the parameter r in
(19) in order to take the jump into account. Let x be the near-interpolation
point, xk a node and l* the segment joining x and Xk. Then for x, Xk V 1 we
set

fropt , if lll*=0,
r- b(x, Xk), if ln1* 40,

where the quantity ropt is the optimal value obtained for r in (19) on the
opposite sides of the fault and b(x, Xk) represents the "effort" required to go
over the barrier, due to the discontinuity dividing the two points. If the jump
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Fig. 2. Function f2(x, y): near-interpolation and signed error surfaces.

is constant or almost constant along 1, it is possible to simply set b(x, xk) = h
where h is the jump size.

Formula (19), after these adjustments in the parameter r, gives results
quite good both for the appearance of the graphic representation and the accu-
racy in computation. Comparing the rendered surface with the one obtained
by the modified quadratic Shepard's formula shows that the introduction of
the parameter r gives a smoother surface which is closer to the approximated
function.

Our procedure has been used to fit the test function proposed by Franke
and Nielson [5] using their set of nodes. Numerous tests were also made on
other surfaces. We present two examples of the rendered surfaces and the
signed error surfaces for the functions

0.,if0_<x<0.5, {yg-x+1, if O0<_x <0.5,
flxy .,ifx >0.5; f 2 (x,y) = Oif0.5_< x < 0.6,

- 0.3, if 0.6,
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defined on the unit square (see Fig. 1 and Fig. 2). We used the parameter
values r = 0.0036,6f = 1.5,7 = 24, and r = 0.0025,/3 = 1.5, 7 = 30 respec-
tively, and once again the set of nodes of Franke and Nielson. The errors can
be considerably reduced by adding more information on the faults; in fact,
the employed set of nodes is not obviously an ad hoc choice.
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