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Adaptive Wavelet Galerkin Methods
on Distorted Domains:

Setup of the Algebraic System

Stefano Berrone and Karsten Urban

Abstract. We use the algorithm of Bertoluzza, Canuto and Urban [2]
for computing integrals of products (of derivatives) of wavelets in order to
solve elliptic PDEs on 2D distorted domains. We construct a variant of the
original method which turns out to be more efficient. Several numerical
results are presented.

§1. Introduction

Adaptive wavelet Galerkin schemes have quite recently been proven to offer
great potential for numerically solving boundary value problems for partial
differential equations. On the one hand, strong analytical properties such
as convergence and optimal efficiency have been proven for elliptic operators
[6,9]. On the other hand, first numerical tests also on non-tensor product
domains indicate the applicability of such methods, [1].

However, the major obstacle so far is the efficient computation of the
entries of the stiffness matrix and the right-hand side of the corresponding
algebraic systems. In fact, it turns out that these entries are more expensive to
compute than, e.g., in the case of adaptive Finite Element Methods. In [2], a
method to adaptively approximate and compute these entries was introduced
and analyzed; numerical results were given for a 1D example. In this paper,
we study the application of the algorithm in [2] for 2D 'distorted' domains,
which are parametric images of the unit square. This allows the study of the
influence of 'realistic' parametrizations of non-tensor product domains on the
assembling of the algebraic system. We incorporate some improvements over
the original method in [2] to increase efficiency, and present various numerical
results.
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§2. Adaptive Approximation of the Algebraic System

Given a linear boundary value problem in a bounded Lipschitz domain Q C
Rn (n > 1), its numerical approximation by a variational method (Galerkin,
Petrov-Galerkin, weighted residuals, ... ) requires the computation of integrals
of the form

j0 b,,,(x)D'u(x)D'3v(x)dx or jffl(x)Dov(x)dx, (1)

al0'11•l
where a,0 E C VN are suitable multi-indices, DI = X ." with Ilai:

al+' .+a,, u and v are suitable trial and test functions belonging to HII'll(Q)
and HII'31I(Q) respectively, b,,'3 E LI(Ql) and fo E L2(Q).

We consider a wavelet Galerkin method with trial and test spaces SA
span TA generated by adaptively choosing a finite subset TA = {¢b : A E A}
within a wavelet basis T = {ob\ : A E J} in L2 (Q), i.e., A C J (see, e.g.,
[5,10]). The wavelets are assumed to have the appropriate regularity for the
above integrals to be well defined.

The construction of such wavelet bases on fairly general domains Q is not a
trivial task. However, quite recently significant progress has been made on this
topic, see [3,4,8,12] and also [13] for a somewhat different approach. The main
idea behind all the constructions in the first cited papers is domain decom-
position and matching. The domain Q is subdivided into N non-overlapping
subdomains Qi. Each subdomain is mapped to the n-dimensional reference
cube fl := [0, 1]n by means of smooth parametric mappings

Fi : ! ,fii, ni = Fj(!), ai := Fi1. (2)

Then, each 7\, A E J, restricted to (1 is the image through F, of a linear
combination of tensor product wavelets ýbA on !2, i.e., if A = (j, k) (j =: I A
denoting the level and k the location in space as well as the type of wavelet),
then

O,\(x)ln. = , AIG,(Gj)), x C £l'
,'ES(i,A)

where S(i, A) is a suitable set of indices of the form (' = (j, k') with k' C Q
and %,,, are suitable coefficients independent of j (see e.g. [3,4]).

2.1. Reduction to univariate integrals

We will only consider the calculation of the integral on the left-hand side of
(1) which enters into the stiffness matrix. The entries for the right-hand side
are treated analogously, [2]. Hence, replacing u by ObA and v by 0,, on the
left-hand side in (1) for some A, ,L E A, we get

N

a,, ba,'(x)DbOA(x)Df90,(x)dx= S S E

la'ET(i,a), f'ES(i,A),
3' ET(i,Ol) j1'ES(i,t,)

x b,,1 (Fi (i)) d., (_) do,• IJ&() •¢x()b'3•()d• (3)
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where the sets T(i, a), T(i, i3) are defined by the chain rule, and da, and do,
are smooth functions depending on Gi and its derivatives. The integrals which
appear on the right-hand side of (3) take the form

where '•()) =(4)

and 20), are univariate scaling functions or wavelets on [0, 1]. Now, we use
the Two-Scale-Relation for the wavelets to express them in terms of scaling
functions on the next higher level, i.e.,

¢()= • m•,•(•), (5)

,AEAý

where mý,_ are the refinement coefficients. Here, the index set Aý C 1£1+1 is

determined by the Two-Scale-Relation and -j denotes the set of all scaling
function indices on a level j. Hence, dý,, becomes

E E M 12ma~x) j - (6)
ýEýAEAA

The computation of each integral on the right-hand side of (6) would
be highly efficient if we could reduce it to a product of univariate integrals,
but, in general, the function 6 is not a tensor product of univariate functions.
However, we can expand it in an appropriate tensor product wavelet basis

n

6* {V0: ( j) =1 " ,(fý), C, E (7)

(where .O" are again univariate scaling functions and wavelets on [0, 1], re-

spectively, possibly different from i0r) as follows

)7= S c0(e). (8)

Then, we approximate 6 locally on S_,'_ := supp 0_ n supp OA by a finite

sum QAh 6, obtained by restricting the sum in (8) to a finite index set A* C
(depending on 6 as well as on &, I, A, A, _ and A), whose precise definition

will be given below. Correspondingly, d, is approximated by

S_ fA (9)
AEAý_AEA,,
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which is a finite linear combination of products of univariate integrals of the
following form

A* o ) )) i n (10)

An algorithm for computing such integrals can be found in [2]. However, here
we use biorthogonal B-spline wavelets [7,11] as trial and test functions. Due
to their explicit representation, efficient direct formulas for the integrals (10)
are available and have been used for the subsequent numerical experiments.

Let us mention that the above strategy slightly differs from [2] since
here we approximate 6 locally on Sý',, whereas in [2] this is done on the

somewhat larger domain S£,I := supp nf supp 'V. This new method ensures
automatically that only non-zero integrals are computed, avoiding a wide
number of checks, which explains why the present method is more efficient
than the original one.

2.2. Adaptive approximation of the stiffness matrix

Now, we are going to describe the construction of the index set A* introduced
above. To this end, we have to introduce some notation. Let us set

I(k, A) := {If E *: Isupp n supp f n supp 0j, I > 0}, (11)

and j := min{IAI, JIf'} as well as J max{tAh, JAI}. Let R0 be the number

of zero moments of k}, [5,10]. Moreover, let T, and T• be the largest integers

such that O E W7!,'°(!2) andj E wTf',-(Q), respectively. Then, we set

R:= min{Ro, Tý - II&II, Th - 11[111.

We make the following

Assumption 1. The system 0* defined in (7) allows the characterization of
the Besov space B',q(0) for indices (a, q) in a certain range Se. C- R+ x (0, 1],
i.e., the Besov seminorm q has the representation

lI•)Bg, q(•) (~ 21CrI, 2qJ2In(q/2-1) I 1 q) 1q , c B',q(Q). (12)

yE3

The following notation will be frequently used in the sequel. For f =
1,..., L, we consider (possibly different) wavelet bases IT = {•b•: At E tj}.
Then, for At 1j, f= 1...,L, we define

i(A. .... ,AL):f 1, if I l-=i supp to.A,I >0,1 0, otherwise.
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Now, we are in a position to define the set A*. Let us fix, once and for all,
independently of A and /, a non-increasing e'(Na0)-sequence 6 = (6j)jEfvr

with strictly positive elements, whose f'(lWo)-norm is close to 1. Let 6 E
Bq,q(0) for some (u, q) E S•e* For an index i E j*, we define its relevance

for the computation of 6,, f6i &1@/5 _•(&) •(•) d& as
p ( • ' / • ) / -• _ 1) ) -l ' l q lPa- (l/-1

(Pt~ ) :=i( _A, 2- 2- 11~ql - q

X 2- (R+n/2)(fl l-J) 2 nJ/2 2I-Xl(11ell-s) 21_A1(11411-s)b-Il -w

Finally, for any 6 > 0, we define

A* >{i G I(_,•) :_•, /(m am•,#Aý #A ) or 1C1 < J}, (13)

which concludes the construction of an adaptive approximation di ,of of

Remark 2. The construction of A* according to (13) seems to require the
explicit knowledge of all the (infinite) coefficients ýp of 6. However, one can

estimate a priori a level J, such that p,(. ) < / m,c_ #Aý #AAt), if

Iv[ > J,. Following [2] it is easy to show that this is valid for

J [ E .1 (14)JIR R+o,+ n(X -)'

where we have set

Pe := 1log 2 E/(mA,,i M, #Aý #Ajl)I + (R + n)J + 1I1(I&I - s)
+ IfI(I -- s) + o1) + log 2 Const.

Replacing dA,\ in the computation of ax,1 in (3) by d*,I, results in an
adaptive approximation a*, of aA,,t. As already mentioned, one can construct
an adaptive approximation f, for the entry of the right-hand side fA\
fn fO(x) DObA(x) dx in the same way.

2.3. Error estimates

Let us assume that the boundary value problem we aim at approximating
is elliptic of order 2s. Let Hg(f2) be the closed subspace of Hs(Q) which
accounts for the given boundary conditions. The wavelet basis IQ intro-
duced above is assumed to form a Riesz basis of this space. The wavelet
Galerkin approximation of our problem is obtained by replacing Hg(Q) by
SA := span{'bA : A E A}, where again A is an adaptively chosen subset of J.
The corresponding Galerkin solution will be denoted by UA := ZAEA uA0•.
The vector UA := (UA)AEA is obtained by solving the linear algebraic system
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Fig. 1. Physical domain (left) and exact solution (right) for the numerical tests.

AAUA = fA, which is defined in a straightforward manner. Let the integrals
which appear in the stiffness matrix as well as the right-hand side be com-
puted in an approximate way, as described above. Denote the resulting matrix
by A* and the resulting vector by fý; let u* be the solution of the modified
linear system AAu* = fý and let u* =EEA =

The following estimate on the effect of the described approximation of
the stiffness matrix and the right-hand side has been established in [2]. It is
readily seen that it also holds for our variant of the original method in [2].

Theorem 3. Under the above and similar assumptions for computing the
right-hand side, there exists co > 0 such that for all 0 < E < Eo:

IUA - UXIsO < c. Li (15)
I UAIs,Ol

§3. Numerical Results

In this section, we present our numerical results. We consider the Poisson
problem with homogeneous Dirichlet boundary conditions on a domain Q
which is the parametric image of f? under a suitable transformation. The
domain is displayed in Figure 1, left. The boundary of Q) consists of two
straight lines and two curved parts. We computed the parametrization of the
four parts of the boundary and then the parametric mapping F :• -f? is
determined by transfinite interpolation, [14].

We constructed a solution u which satisfies the boundary conditions and
which has a strong layer near the upper right corner of the domain. This
function is shown on the right in Figure 1. Since we have an explicit formula
for u, we determined the right-hand side f by using MAPLE V.

The choice of these parameters allows us to test an interesting situation.
Indeed, the parametric mapping is obviously far from being a tensor product.
Hence, we can study the influence of a 'realistic' transformation. Even though
this influence was studied in [2] in 1D, we face here a non-tensor product
situation for the first time. Moreover, for computing the right-hand side, two
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AI = Ij = jo, AI= jo, = jo + 1 AI= ii = Jo + 1
4J j..ax #Int J j..ax #Int J• j..ax #Int

0.5 5 3,4 16,80 8 5,6 108,1264 6 4,5 196,8150
0.25 5 4 18,138 8 6 142,1603 7 5 224, 13168
0.125 5 4,5 26,196 8 6,7 184,2751 7 5,6 344,18052
0.0625 7 4,5 35,260 10 7 281,3924 8 6 442,21924
0.03125 8 5,6 44,454 11 7,8 396,8048 9 6,7 556,36600
0.015625 8 6 61,656 11 8 716,12044 10 7 840,49916
0.0078125 9 6,7 82,1318 12 8,9 1152,27708 11 7,8 1172,100464

Tab. 1. Estimated and determined maximum level and number of integrals in A*.

kinds of effects are present, namely the parametric mapping and the layer near
the corner. We stress that we do not intend to study any particular choice
for the adaptive discretization, i.e., the choice of the set A. We are primarily
interested in the behaviour of the adaptive approximation QA*c in a realistic
situation.

As trial and test functions we used the biorthogonal B-spline wavelets
on the interval corresponding to the parameters d = d = 2 (i.e., piecewise
linear primal functions and dual functions of lowest possible order) from [11]
(see also [7] for the original construction on R). For the system e*, we
choose as in [2] piecewise linear interpolatory wavelets. This of course implies
that the computation of the corresponding wavelet coefficients cc, can easily
be performed. Moreover, since piecewise linear interpolatory wavelets are
nothing else than hierarchical B-splines, the integrals in (10) actually only
contain scaling functions.

We used the parameters a = 2, q = 3/4, k: (k + 1)-2 as well as the
corresponding parameters -r = 2, p = 3/4 and Sk : k- 1 for the right-hand
side, [2].

In the ID tests in [2], the parameter e was chosen as the error in the
Hl-norm of a corresponding uniform discretization. From a practical point
of view, this is of course unrealistic. First of all, the solution is in general
not known. Moreover, the ultimate goal of an adaptive scheme is to avoid
a (high level) uniform discretization but to use the degrees of freedom in a
more economical way. Hence, we performed various tests on the choice of the
parameter E.

Our first test concerns J, in Remark 2 and the number of integrals needed
for computing the elements of the stiffness matrix. Our computations are
performed in this way: at first, we start from the minimum level (jo = 3) for
the used wavelet basis, where we fix a certain 6, then we solve the problem
with scaling functions and wavelets. In Table 1 we compare the theoretical
estimate J, on the maximum level in A* with the values that were actually
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determined by our indicators in (13). For different portions of the stiffness
matrix, we display the predicted J,, the detected maximum levels by the
indicator as well as the minimum and maximum number of integrals needed
for computing non zero-entries.

We see that the estimated J, is always larger than the effectively used
maximum level. This is what we expected, but the efficiency of the algorithm
may be reduced by an excessive over-estimate of J,. We also deduce that the
efficiency of the method crucially depends on the choice of E since the number
of integrals strongly grows for decreasing -. This is surely due to the low order
of the interpolatory wavelets used.

Next, we present in Table 2 the average number of integrals computed
for the stiffness matrix and the right-hand side for the first two levels with
the same e of Table 1. Here JA := max{IAl A C A}.

S0.5 0.25 0.125 0.0625 3.1e - 2 1.6e - 2 7.8e - 3

JA = 3 4.04 5.47 8.57 11.05 16.99 24.15 41.62
A JA=4 111.55 48.31 234.08 305.98 489.47 738.67 1336.59

JA = 3 9 9 11.49 17.98 31.27 55.69 95.10

f JA = 4 87.4 87.4 87.94 90.17 137.56 207.72 411.61

Tab. 2. Average number of integrals per entry.

We deduce that the choice of E not only influences the maximal and
minimal number of integrals as shown in Table 1. Since the average number
of integrals grows when e decreases, the choice of E effects the efficiency of the
computation of the whole stiffness matrix. Moreover, the presence of the first
wavelet level also increases the number of integrals.

Finally, we consider the error in the H 1 -norm and the relative error

for different choices of the parameter E. In Table 3 and Figure 2 'rate' cor-
responds to the rate of convergence w.r.t. the exact solution in the Hl-norm
for the first two levels in A. We see that these quantities do not depend on E.
At these levels the relative discretization error still exceeds the relative error
(15). This explains why the rate of convergence is basically constant w.r.t.
the choices of E.

Hence, the choice of c matters only if this value is at least of the same
order than the relative discretization error. We remark that also for increasing
e all scaling functions on level J whose support overlap S£ , belong to A*.

This implies that the error due to the approximation of the entries of the
linear system is bounded.
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a rate rAx
0.5 1.9666 0.1335
0.25 1.9633 0.1337
0.125 1.9538 0.1344
0.0625 1.9658 0.1338
0.03125 1.9563 0.1343
0.015625 1.9591 0.1342
0.0078125 1.9568 0.1343

Tab. 3. Relative error and rate of convergence in dependence of e.

Fig. 2. Rate (left) and rex (right) of Table 3.
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