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Constructive Approximation by
(V,f)-Reproducing Kernels

Mohammed-Najib Benbourhim

Abstract. In this paper we propose a constructive method to build
reproducing kernels. We define the notion of (V, f)-reproducing kernel,
and prove that every reproducing kernel is a (V, f)-reproducing kernel.
We study the minimal approximation by these (V, f)-reproducing kernels
for different choices of V and f. Examples to which our results apply
include curve and surface fitting.

§1. (V,f)-Reproducing Kernels

For any set (respectively locally compact set) Q2, we denote by ]Rn (respectively
Cm(Q)) the space of real-valued functions (respectively m-times continuously
differentiable functions) defined on Q equipped with the topology of pointwise
convergence (respectively uniform convergence on the compact subsets of Q).
Let us recall some definitions.

Definition 1.1. A real-valued function H defined on Q x Q2 is a reproducing
kernel on Q x Q if

1) H is symmetric: H(t, s) = H(s, t) for all t, s E Q,

2) H is of positive type:

k,l=N1: AAH(tt) > 0,

k,l=l

for any finite point set {tk}kLl of Q and real numbers NAk}'i.

Definition 1.2. A vector subspace - of ]R is said to be a hilbertian subspace
of R1 (respectively Cm (fl)) if

1) h- is a Hilbert space,

2) The natural injection from 7-W into 11 (respectively Cm (Q)) is continuous.

We review some important results on reproducing kernels which are studied
in [4].
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Theorem 1.1.

1) A Hilbert spaceH (respectively a real-valued function H defined on 9 x Q)
is a hilbertian subspace of 1R (respectively a reproducing kernel on 9 x Q)
if and only if there exists one and only one reproducing kernel H on Q x Q
(respectively hilbertian subspace 7-R of 1RO) such that

u(t) = (U I H(.,t)) , Vt C R, VU E 'H.

'H is called the hilbertian subspace associated with H.

2) For any hilbertian basis (fi)EIc of'H: H(t, s) = E fi(t)fi(s).

iEI

3) If H is separately m-times continuously differentiable, then 7- is a hilber-
tian subspace of Cm (Q).

4) The vector space 7-Ho =span{(H(., t))t•f} is dense in 'H.

Let (V, (. ')v) be a Hilbert space, 9 be a set and f be a function from Q2 into
V.

Definition 1.3. For all f : 2 --- V, we define a (V, f)-reproducing kernel Hf
by

Hf(t,s) = (f(t) lf(s))v, V(t,s) E Q x Q2. (1.1)

We have the following result:

Theorem 1.2. Hf defined by (1.1) is a reproducing kernel on Q x Q2 and its

associated hilbertian subspace ?l1 of WR0 is

'Hf = {w C ]R0 I 3u E V: w(t) = (u I f(t))v, Vt E Q}.

Proof. One can easily verify that Hf is a reproducing kernel.
Let Hf : V -- 1R be defined by (HI u)(t) = (u I f(t))v. The mapping Hf
is linear, and the inequality

I (H1u)(t) I • Iu Iv I f(t) 1v=uIv Hf (t,t),

for all t C Q2 and for all u C V implies that it is continuous. Let M be the
closure in V of the vector space span{(f(t))tE}, and PM the orthogonal

projector on M. We define on 'Hf = It(V) the bilinear form

(Ht u I Hf v),f = (PMu I PMv)V.

It is easy to see that this form is a scalar product on 'Hf. Then the linear
mapping H/ : M -- + 'f is an isometry, and consequently ('Hf, (. I "),) is a
Hilbert space. For all t c (, the function
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Hf(t, .) : s C Q --- + Hf(t, s) = (f(t) I f(s))v,

is an element of 7"/, and satisfies the reproducing formula

(if u)(t) = (Ibu I Hf(t, .)),f, Vu E V.

Consequently (see Theorem 1.1), h-f is a hilbertian subspace of 1n and admits
H1 as reproducing kernel. Ml

Theorem 1.3. Let w be a set and c a mapping from w to Q. Then

(Hc)f(y, z) = Hf(c(y), c(z)) = (f(c(y)) I f(c(z)))V

is a reproducing kernel on w x w.

Proof: For all y E w, f(c(y)) is in V. The function (Hc)f is symmetric and
is of positive type:

k,l=N k=N k=N

E )Akt(Hc)f (Yk' Y1) =(E Akf(c(Yk)) I E Akf(C(yk)))V -> 0. 0
k,1=1 k=1 k=1

Example 1.1. Let V = L2 (a,b), Q a subset of R and f(t)(x) = exp(cxt)
where c is a real constant. Then

Ss (exp(cb(t + s)) - exp(ca(t + s)))/(c(t + s)), if (t + s)40,
( b - a, otherwise.

Example 1.2. Let V = L 2(R+), and suppose Q1 is a subset of R'.

For all functions c: -Q - (0, +oo), we have

(i) If f(t)(x) = -Li exp-c(t)x12 , then Hf(t, s) = 1c(t) + c(s)
1

(ii) If f(t)(x) = exp-c(t)x, then Hf(t, s) = c(t)+c(s)' and in particular if

P~)+ ~) adt)priulri

c(t) = P(t) (with P(t) and Q(t) polynomials), we obtain the rational repro-

ducing kernel

Hf(t, s) Q(t)Q(s)
P(t)Q(s) + P(s)Q(t)

§2. (V,f)-Reproducing Kernels of Convolution Type

We consider the case where

1) V = L2(Rn) and S1 = R'.

2) f(t)(x) f(t - x), with f in the familar Sobolev space Hm (ln).

Then Hf(t, s) = J f(t - x)f(s - x)dx.
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Theorem 2.1. We have the following properties:

1) HU(t,s) = h 1(t- s) with hf(ý) = (f* f)(ý) = F(I Ff 12)(6), where
f(x) = f(-x) and .Yf is the Fourier transform off.

2) hf E C~n(ln) = {u e Cl(m) ] i (D'u)(t) = 0, 0 <1 a j< m}
Iti- -o

3) The associated hilbertian subspace of H1 is

J1Wf f* L2( Rn) -* Cm(]R') (continuous embedding).

4) In particular, if I .f I> 0, then
S' Iw L' o (Rn), FW L2(RIn)}

equipped with the scalar product

(W1 I W2)H =f F1(6) JF (6)wd)

IFf(6) 12

5) If f is radial, then hf is radial: H1 (t, s) = hi(I t - s 1).
6) For all distinct points {tk}INl in In', the matrix HN = (Hi(tk,t1)) 1 <_ ,i•N

is invertible (strictly positive definite).

Proof-
1) We have

H1 (t, s) = (27r)- fr e-i(t•SI) I .yf(ý)1 2 d6 = .F(I 97f 12)(t S).

2) f E H m (]•R) • Dchf = (Daf) * j c C°(In) for 0 <1 a 1-< m, (see [2]).

3) is a consequence of Theorem 1.2 and the property given in 1).

4) Since 7-i1 -- C-(Rn) --4 S', we have the equivalences:

{w E 7-f} 13 {u E L2(IRn) :Fw = .Fuf}
I.wCL' c Rn), .FW (n

From Theorem 1.2, we have

w(t) = (u I f(t - "))L2(pp) = (PMU I f(t - "))L2(R-) = (PMU *Mt)

Then Yuw =PM u~f, and

(Wl I W2)Hf = I PMUl(X)PMu 2(x)dx

I FP,,,~uj(6) .7PMU 2 (6)d6 = J u" .w(6) U2ýd6_7 f(ý) 12nY • "W
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5) For any orthogonal matrix A,

h1 (At) = f(x)f (At - x)dx = J f(Ax)f(A(t - x))dx

f J(x)fS(t - x)dx = hf(t),JRn

since f(Ax) = f((x) and I detA I= 1.

6) We suppose that f $ 0 in L2 (I•n). Since the matrix

HN = (f ftk Xfti- x)dx is a Gram matrix, it is invertible
R' l<_k,l<_N

if and only if the system {f(tk -- ")}N= is lineary independent in L2(1Rn). If
k=N

E ckf(tk - x) = 0 in L 2(Rn), for ck E R, 1 < k < N, then by the Fourier
k=1

k=N

transform we get ( Y cke-i(tkl)))yFf(6) = 0 in L 2(]Rn).
k=1

k=N

The Lebesgue measure of the set AK = {C E 1W I E Cke-i(tkI) = 0} is equal
k=1

to zero. Then .Ff vanishes outside Kr, i.e: .Ff - 0 in L2 (RIn) and by the
inverse Fourier transform, f = 0 in L 2(IRn), which complete the proof. EJ

sin2
g( )Example 2.1. Let u(x) = (1- I x I)+ and FVu = v. We have v(x) - s22

(i) Taking f =.77(l u 12 ), H(t, s) =(1- 1 t -s ).5

2 ~ in 2
(t)(ii) Taking f = .7(I v 1I), H,(t, s) = (t -s8n2

Example 2.2. ( Bessel reproducing kernels) For n E IN, a E IR and a > n;
consider Ga, E L 2 (R n) defined by .F(Ga)(x) = (1 + IX 12)

- .

(i) Taking f = F(I G1 1½), Hf(t,s) = (1+± I )t -

(ii) Taking f = .- (I .TGn+ 1 1), H1 (t, s) =exp( t s ) and2nr( n+2)ex( t-s)an

7f = H2- (W•') (Sobolev space).

Example 2.3. (v-B-spline reproducing kernels) Let

1) Yi(x) = lxl.
2) v E V' (distributions with compact support) such that v(p) = 0, for all

polynomial p in P, (IR).

3) f=v*Yt.
For such functions f, we give the following theorem without proof.
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Theorem 2.2. We have:

1) f E L2 (R).

2) For all u in V'+'(IR) = {v C L2o(IR)/ v(0+1) C L2 (R)} (Beppo-Levi

space) we have J (u+1)(x)f(t - x)dx = (v * u)(t).

3) Hf(t, s) = (-1)'(P * v * Y21+ 1)(t - s) and 'H = v * V1+ 1 (IR).

In the particular case of divided differences, v is defined as the mth-iterated*m * M ( 6_ • _ 6_ b)*m n
convolution v - and - (6--(

§3. Data Fitting by (Vf)-Reproducing Kernels

Let {tk}N =a set of distinct points in Q, and define a linear operator AN from
?1f into R by AN(U) = (u(tk))l<k<N.

Definition 3.1. For all ZN C RN and E E [0, 1) we define a spline to be any
solution of the following minimal approximation problem:

(P,(ZN)): inf ((1 - )(u I u),f + EIIANu - ZN N),
uEC,

where

Cc ANI{ZN}, if c = 0 (Interpolation),
Hf7-t, ife E]0, 1[ (Smoothing).

The following theorem gives the spline in the case E :A 0.

Theorem 3.1. For all (E, ZN) e]0, l[xIRN, the problem P,(ZN) (Smoothing)
admits a unique solution

k=N
UE(t) = Mk AHf(t,tk),

k=1

where the coefficients tA -= (AE, ... , A) e IRN are the solution of the system

C

(HN + IN)AN = ZN,
1--€

with HN = (Hf (tk,t1))1<k,<_N and IN is the identity matrix.

Proof: 1) From the continuous embedding: 'H-f -4 Rf (see Theorem 1.2),
we deduce that AN is continuous. 2) AN(l-f) is closed as a vector subspace

of RN. Then from the general spline theory (see [1,3]) we get the theorem. El
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Theorem 3.2. The following two properties are equivalent:

1) For all ZN E RN, the problem PO(ZN) admits a unique solution.

2) The system {f(tk)}N , is linearly independent in V.

Proof. For all ZN E RN, the problem PO(ZN) admits a unique solution if and
only if the matrix HN (Hf (tk, tI)) 1<k,1<N is invertible (see [1,3]). Since the

matrix HN = ((f(tk) If())V)J1<k,l<N is a Gram matrix, it is invertible if

and only if the system {f(tk)}f= is lineary independent in V. o

Furthermore, for the particular case V = L2 (1R) and f E Hm(R'),
Theorem 3.2 and the property (6) of Theorem 2.1 imply the following theorem.

Theorem 3.3. For all f E H m (Rn) and ZN E RN, the problem Po(ZN)
(Interpolation) admits a unique solution

k=N
0 (t)= ° Hf (t, tk),

k=1

where the coefficients tAO = (AO, A%) E RN are the solution of the system
HNA0 = ZN,

with HN = (H1 (tk,tl))1<k, <N and IN is the identity matrix.

§4. Data Fitting Preserving Polynomials

Let pd(Rn) the vector space of polynomials of degree at most d. We suppose:

(Hi) For all p E Pd(R) the subset {tk} of is such that

{p(tk)=O, 1<k<N}==p =O.

(H2) hf f Pd(Rn) = {0}.

We remark that in the case V = L2(R') and f E H' (R n), the hypothesis
(H2) is satisfied because W-f C Com(Rn) (see Theorem 2.1(2)), and

C (R n Pd(IR) = {0o.

Let R-d be the Hilbert direct sum: 7i- = Rf (DPd(Rn). We denote by HI
the orthogonal projector from 7-id onto hi, and we define on Rd the linear

mapping AN(U) = (U(tk))l<k<N E RN. For all (C,ZN) E [0,1] X RN, we

consider the following minimal approximation problem in Rd:

(P,(ZN)) : inf ((1-E)(fli(u) I Hf(u))•i + fIANU -ZNII[N),uEC,

where AN1 A {ZN}, if e = 0 (Interpolation),

C,= Hd, if E e]0, 1[ (Smoothing),

7pd(I•), if e = 1 (Least squares).

The hypothesis (H1) implies that the problem P1 (zN) admits a unique solu-
tion. In the case e E]0, 1[ (Smoothing) we have the following theorem:
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Theorem 4.1. For all (E, zN) E]O, 1[x'N, the problem P,(ZN) admits a
unique solution a'. In the case f E]O, 1[, the solution u' is given by

k=N i=nd

af(t) = E )4H1 (t, tk) + E b~pi(t),
k=1 i=1

where the coefficients IAf = (A,, AE) E RN and tB' (bE,..., b~ d E R n,

are the solution of the system

(HN + " IN E' ~A) =(ZN'~

with

1) HN = (Hf(tk,tt))<_k,I<N and IN is the identity matrix,

2) E = (Ek,i)l<i<n with Ek,i = Pi(tk) and (Pi)1<i<nd is a basis ofPd(In).

In particular, if there exists p E p'd(ln) such that {p(tk) = ZN,k, 1 < k < N},
then o, = p (preserving polynomials property).

Proof: Theorem 4.1 is a consequence of general spline theory (see [1,3]):
1) AN is continuous since Rd is a hilbertian subspace of JR.

2) Hf is continuous and Hf(7-R) = 7-Ri is closed since HIj is an orthogonal
projector.

3) kerAN n- kerH = {0}: derives from the hypothesis (HI) and the fact
that ker HI = Pd(In).

4) ker AN + ker Hf is closed since ker Hf is a finite dimensional vector space.
EJ
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