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Polyharmonic Splines in Wfd:
Tools for Fast Evaluation

R. K. Beatson, J. B. Cherrie, and David L. Ragozin

§1. Introduction

As is now well known, hierarchical and fast multipole-like methods can greatly
reduce the storage and operation counts for fitting and evaluating radial basis

functions. In particular, for spline functions of the form

N

s(x) = p(x) + S Aj(jx - xi1), (1)

p a low degree polynomial, the cost of a single extra evaluation can be reduced
from O(N) to 0(1) operations, and the cost of a matrix-vector product (that
is, evaluation at all centers) can be decreased from O(N 2 ) to O(N).

This paper outlines some of the mathematics required to implement meth-

ods of these types for polyharmonic splines in Rd d even, that is for splines s
corresponding to q chosen from the list

S2(1+1-d/2), f = 0,... , d/2 - 2, (2)
¢k(r) r2(e+1-d/ 2 ) log(r), f = d/2 - 1,....

We carry out most of our work in the general Rd setting and then specialize
to d = 4. We refer the reader to our more detailed work [1] which contains
all the details of this special case. We are currently working on developing all
the details for the general Rd case.

A key technique in our development is the exploitation of the rotation
group invariance of radial basis functions. This means that we exploit the fact
that any kernel k(x, y) = €(Ix - yl) will be rotation invariant in the sense that

k(gx, gy) = k(x, y), for all orthogonal g c O(d). (3)

Invariance leads to many crucial simplifications and efficiencies in developing
and manipulating the polyharmonic expansions which lie at the heart of the
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hierarchical and fast multipole expansions. Related development of general
spherical harmonic expansions based on these techniques can be found in [6,
7,8].

We will not detail the basic framework of hierarchical and fast multipole
methods within which this mathematics sits. However, we do recall that
an essential component of the method is the grouping of approximations to
summands like (1) into subsums, which are approximations to the influence
of that part of (1) associated with centers in a single panel or cluster. The
key steps to obtain them requires:

"* Finding explicit Taylor/Laurent expansions

For each x, 0(Ix - x< )= F ,m(x,x<), Ix<,I < Ix, (4)

with F homogeneous polynomials of degree m in x<.

"* Finding an efficient separation of the x, x< influence in Pm, i.e., expanding

Fxx<) - f g (X) (5)

for some good choice of (basis) functions {fm(x)} and {gm(x)}.

These expansion and separation results provide the approximations to sub-
sums which are the far and near field expansions. Other essential components
are the tools to manipulate these expansions, namely error estimates, unique-
ness theorems, and translation formulae. In this paper we concentrate on the
algebraic tools and give some extensive general results on (4) (Theorem 6)
and (5) ((20) in Section 3) and for R 4 we give the appropriate far and near
field expansions for the 0j (Theorems 7 and 8), and a brief indication of the
dual basis leading to (20). Analogous results for polyharmonic splines in IR2

appear in [3]. The reader unfamiliar with the framework of the fast multipole
method may wish to refer to the original paper of Greengard and Rokhlin [4],
or to the introductory short course [2].

§2. Polyharmonic Functions and Homogeneous Polynomials

First we record some detailed facts relating to the Laplacian A, and its actions
on special homogeneous functions and the logarithm of the distance. In par-
ticular, we show why our basic functions 0j in (2) are polyharmonic or more
specifically (f + 1)-harmonic in the sense that A1+10e = 0.

Lemma 1. Let I I be the 2-norm on Rd, d even.

i) If f : Rd \ {0} --ý R is a non-trivial harmonic function that is homoge-
neous of integral degree m, then

A(I. 12 1f) = 2f (d + 2e + 2m - 2)1.12(e-1)f. (6)
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Hence I . 2
1f is polyharmonic of exact order

{f+ i, forf>O, m>-- orm<l1-e-d
m+M , fort< O,m> 1_-t-_

2- 2"'

In particular is (f + 1)-harmonic for e > 0,

I (f + d/2)-harmonic for -d/2 < f < 0.
ii) - [21t log[. I is (f + d/2)-harmonic for £ > 0. More generally,

Al _ 12 log I• I = 1. 12(1-1)(2f(2.+d-2)logI• I + (4t + d- 2)). (7)

Proof: For the first part of (i), just apply the product rule for the Laplacian,

A(fg) = (Af)g + 2(Vf) (Vg) + f(Ag),

and the Euler relation for a function f that is homogeneous of degree m,

x. (Vf)(x) = mf(X).

Then observe how many applications of A are required to reduce one of the
multipliers to 0. Specializing to the case f = 1 yields the last result of (i).

The first part of (ii) follows from (7) in combination with (i) and its proof.
(7) follows from (i), the product rule for the Laplacian, and the computation
ofVlogI.IandAlog.II. F1

From the detailed eigenvalue-like information on the Laplacian map in
(6), we can get a decomposition theorem for II,,, the homogeneous polynomials
of degree n, in terms of the spherical harmonics of degree n:

EIn={p Efn: Ap=0}=ker(A) nfln.

This is useful in understanding the structure of the homogeneous polynomial
terms in any Taylor/Laurent type series expansions for the €(Ix - xiI). In
view of Lemma 1 the decomposition splits TIn into its harmonic, biharmonic,
triharmonic, etc., parts.

Lemma 2. Hn =I- o2 J I"2t"-21" In particular, IEn f-I In-n_2 = {0}.

Proof: Note that for n = 0, 1, I,-, = En, so the base for an inductive proof
is true. Assume the decomposition for n - 2, some n > 2, so for each p £ Tin,

[(n-2)/2J

Ap - E . 12'-hn 2 - 21, some hi E, n-2-2f.
1=0

Then by (6), if

L(n-2)/2J

hn= P- Y 1(t + 1)-(d + 2n- 2(f + 2))-1I "12(f+1)hn_2(t+1),
1=0 2

then Ahn = 0. So hn E E•I and the decomposition of Hn is proved by induc-
tion. El
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Some additional consequences of (6) come when we study what happens
for negative f. Here we have noted that I2-2m-df is harmonic whenever f
is m-homogeneous and harmonic. But bringing the factor of (I -1-2)m inside
the m-homogeneous function f shows I. 12-df(./j" 12) is harmonic for any
homogeneous harmonic function f. In fact this construction is independent
of the homogeneity order of f. In general the Kelvin transform, defined by
Kf(x) = jxj2-df(x/Ixj 2), which arises from inversion in the sphere followed
by multiplication by ix12-d, maps harmonic functions to harmonic functions.
On fiH Kf = I 2d-2nf. Associated with the Kelvin transform are the spaces
of negative degree 2 - d - m

@I. 12' KIH +2 @ I = 2 -d- 2? nI 2 , (8)
1=0 1=0

which are useful for analysing Laurent (far field) series. An application of
Lemma 1 shows that Equation (8) displays the space under consideration
split into its harmonic, biharmonic, triharmonic, etc., parts.

§3. Rotation Invariance and Simplified Taylor Expansions

The decompositions of polynomial spaces in the previous section already sim-
plify the Taylor/Laurent type expansions (4) we need to determine. To make
further progress, we want to exploit the rotation invariance of 0(Ix - xil).
When we come to combine subsums in (1), we will want to fix x and concen-
trate on rotations (orthogonal matrices) which fix x. When we are given a pole
p e Rd, we let Gp = {g : g E 0(d), gp = p} denote the rotations about the ray
through p. So the function f4(x<) = 0(Ix - x<,) satisfies f;(gx<) = f;(x),
for all g E Gx. We refer to any function f which is unchanged by rotations in
Gp as a p-zonal function. In particular we have the p-zonal harmonics

F= I {hEIH,: h(gy)=h(y)forallg GC }, (9)

and the p-zonal homogeneous polynomials fiP. Now the Taylor/Laurent ex-
pansion of f; as in (4), will have Fm(x, gx<) = F (gx, gx<) = F (x, x<), for
g C Gx since the homogeneous terms must remain unchanged under rotations
(see Theorem 6). Thus these terms will be x-zonal polynomials as a function
of x<. What is the general stucture of Hi and IH?

Theorem 3. Fix a pole x E Rd\{0} . Let Xx() = 1, Xt() = 2(x, .). Then
there exist a unique set of constants am, m > 1, such that the inductively
defined sequence of homogeneous polynomials,

Xm+1 = XlX - am+l x1 21 2 xm-1, M> 1, (10)

consists of harmonic functions. Moreover,
i) Xx is an m-homogeneous x-zonal harmonic function, which is rotation

invariant in the sense that x-(g') = xx(-) for all g E 0(d).
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ii) The constants am+, are independent of x. Hence

Xm(x<) = Xx< (x), 0 # x,x< E R (11)

and the Xx (x,) are also homogeneous and harmonic as functions of x.

i)If X 1 IX0 { -2(,0 = 0,..., Lm/2J }, form a basis for IIm. In
particular, X4 is the unique (up to a scalar multiple) element of E'I.

iv) For m, n nonnegative integers, the kernels

km,f,n(x,X<) =Ixj 2 1+m-KIx<1 2 1+n-K'X_ 2 A(x<), z= min(m,n), (12)

m-=nmod2, -=0,...,[tr/2J,

form a basis for the space of all rotation invariant polynomial kernels,

Pm,n(x, x<) which are homogeneous of degree m in x, and degree n in x<.

Proof: The proof of the existence of am and (i), (ii), and (iii) is by induction.
For m = 0 (i) and (iii) are trivially true. Let 0 5 h E Ex. Then h has the
form h(.) = c(p, .). Since h is x-zonal c(p, .) = c(p,g.) = c(g- 1 p, .), for all
g E Gp. This implies p has the same direction as x. Hence h is a multiple of
Xx and (i) and (iii) follow for m r 1.

Now induction shows that (10) defines m-homogeneous x-zonal polyno-
mials which are m-homogeneous in x, for any choice of am+,. Also they are
rotation invariant. To complete the inductive step for (i) with a fixed x we
need only show that there is a unique am+, that makes Xx+i(.) harmonic.

From the homogeneity in x, we may assume IxI = 1. Since X mxx is
a homogenous polynomial of degree m + 1, Lemma 2 asserts that there ex-
ist unique homogenous harmonic polynomials qm+1-2t such that XxXx =

EL(o+l)/2] • .12'q +1-21. Since VXx = 2xT, the product rule for the Lapla-
cian and the inductive assumption that Xx is harmonic show that

A(xx) = 4xT = 4 0Xx', IxI = 1, (13)

where 0. denotes the directional derivative in the (fixed) direction x. Since
AO.Xn = axAxx = 0, it follows that XmxX is bi-harmonic and

1(xTx•) = A(" l~qm-1) = 2(d + 2(m - 1))qm-1.

Since A maps x-zonal functions to x-zonal functions it follows that qm-1 €
E-x 1 and therefore by part (iii) of the inductive hypothesis qm-1 is a multiple
of Xm-. Thus the existence and uniqueness of am+, making Xm+1 harmonic
is proved.

We now turn to the inductive step in the proof of (ii). Using the rotation
invariance part of the inductive hypothesis, Xm+l(g-1.) is

x'l(gl")Xm(g-1") - am+, x12 1g-1 . 12•x-(g 1 ) (14)X1 Xm m- am+lmlgxl 2.Almxix (14)gX /gX IX2.2
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Since rotations and A commute, the left-hand side of the above is harmonic.
Thus the right-hand side of (14) equals xm'+1 and a,,+, is independent of g.
Using homogeneity it is also independent of lxJ. Hence am+l is independent of
x. The symmetry in x, x< of (10) then implies (11), and hence the homogeneity
and harmonicity of X' +1(x<) as a function of x.

We now turn to the inductive step in the proof of (iii). Since Hx = -lx/lxl

and Xa, = aKXx we may assume Jxl = 1. It suffices to show that dim r 1
[m/2J + 1 since, by Lemma 1, {1" 12"Xx+1-2 1 , f = 0,..., [m/2j} is an inde-
pendent set in Hm+1. Since we can rotate el to x by some orthogonal map,
which will isomorphically map Hx +1 to HI+l, we prove our dimensionality

statement for x = el. To analyze the value f(y) of any ei-zonal function
f, we choose orthogonal g± E Ge, which transform y into the coordinate
plane spanned by the first two basis vectors. The two possible values for the
transformed y are

g9y = (y, ei)ei ± - yFy2 
- (y, el 2

e2,

Then f(y) = f(g±y) = f(yi,t ýIyI -y2,0,...,0). In particular, f must be
even in its second variable. Iff E 11M+1

L(m+1)/2J 21A~) = ZE cam 2 I y,2 for some c,.

1=0
e~el

Hence the functions ym+ 1-2t(Iy[ 2 
- y2)1 span He1

For (iv) we just note that pm,n(X,) = ixlmpmn(x/IXl, -) E Hxn/1x by the
homogeneity assumptions. Thus the basis facts from (iii) imply there are
functions bn, 1(x/ixi) with

Ln/2J

Pm,n(X,) = E bn.,(x/ixi)ixim " I In-2t"
1=0

The rotation invariance of Pm,n and of the terms Xim J . In-2,/xx implies

bn,t(gx/lgxi) = bn,t(x/IxI) for all rotations g. Rotating x/JxJ to eI shows
bn,f(x/iXi) = b,,t(el), i.e., the b,,t are constants. Moreover, the homogeneity
in x of XJ4 shows

Ln/2J
pm~nXD ~3 n, 11121-(n-m)l . 2t1x~.(5pm ,.(x, ) =.I x - f (15)

1=0

Since the left hand side is a polynomial of degree m in x, and the I •2tx)(n--2t

are independent, each ii 2 e-(n-m),� associated with a nonzero coefficient
must be a polynomial of degree m in x. Hence, n - m = 2j must be even.
Also, applying the second part of Lemma 2, 2(f - j) = 29 - (n - m) > 0. If
m > n the proof of (iv) is done. If m < n, then reindexing the sum in terms
of (f - j) yields (12). 0

The following result is known [5], but is included for the sake of com-
pleteness.
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Theorem 4. Define a rotation invariant inner product (pairing) for functions
on the unit ball B C Rd by

[f, h] = cv 1Y1'1 f(y)h(y)dy, cv' = vol{IyI < 1}. (16)

i) If f, h are homogeneous of degrees m,n, respectively with fh E L(1(B),
then [f, h] = 0 if and only if fAIY=I1 f(y)h(y)dA = 0, i.e., the integral of

fh over the sphere Sd-I is zero.

ii) If m : n, then I -2I"En and I. 12jlHm are orthogonal with respect to this
inner product(pairing), provided m + n + 2(i + j) > -d.

Proof: For (i) just introduce polar coordinates (r, y) E [0, 1] x Sd-1. Then,
by homogeneity and scaling properties of the area of {x : IxI = r},

[f,h] = cv rm+n+d-1 f(y)h(y)dAdr, m+n+d > O,
"1=0 Jd--1

and the result follows. By (i) it suffices to prove (ii) when i = j = 0, since
integrals of a product I". 2(i+j)fh on Sd-i do not depend on i,j. Let f E
IHm and h E EI,. Then by Green's Theorem and the Euler relation for

homogeneous functions

O = < (f(y)Ah(y) - h(y)Af(y))dY

= f (f(y)Vh(y) - h(y)Vf(y)) . ndA = 11=1(n - m)f(y)h(y)dA.

Thus f{I.= 1} f(y)h(y)dA = 0, and the analogous relation holds for integration

over the ball by part (i). 0

An application of the above gives

Lemma 5. The constants am, m > 2, in the 3-term recurrence (10) defining
the x-zonal harmonics Xn of Theorem 3 are positive.

Proof: By Theorem 4 and (10),

01. = [x, -]amI [XX'XxX-1,i xa-[]

[[X-I,Xx'-1] - am+l,1 [,-,+ . -1
-[x,,x,, +am,-,I XM-2] -am+l[l" .xi-i,x,-x-

- [x",x am+,[I. I2X -_1,Xm--1].

Hence, am+, = [Xm,XmI/[I ,-,-1, X,-1•] >0. 11

Now part (iii) of Theorem 3 leads quite directly to the structure of near
and far field expansions of general rotation invariant kernels O(x, x<). The



54 R. K. Beatson, J. B. Cherrie, and D. L. Ragozin

heuristic that a far field expansion of 7p(x, x<) with respect to x can be found
from a Taylor expansion with respect to x<, has been known to us for some
while. Theorem 6 below gives a proof that the underlying idea is correct
inimportant special cases. In fact, we have the following result for such 0
which are jointly homogeneous (O(ax, ax,) = a

2
n(x, x<)) for some even

integral power and are analytic about x< = 0, such as

o.(XX<) = Ix - x< 1n(log(Ix - x<12) - log(Ix12)). (17)

Theorem 6. Let O(x, x<)X,x, x< C Rd be rotation invariant, jointly homo-
geneous of degree 2n and analytic in x, x<, for Jx<I < lxi. Then there exist
constants cn,t such that the Taylor expansion of about x< = 0 has the form

oo Lm/2j

X j= )7 c',A1XI2(n+1em)lX<121Xx, 2ex) (8
mV0 m ----0)18

m=O 1=0

o Lm/2J cn ,X12(n+t-m) x<12tXx< (•( 9
E•- E M, ,,M-2t(X) (19

m=O 1=O

When ¢ is (k + 1)-harmonic in x<, the upper limit on f in (18) or (19) is
min{k, [m/2j}. If O(x,0) = 0 then the lower limit on m in (18) or (19) is 1.

Proof: The terms p'(x, x<) in (4), the Taylor series of O(x, x<) with respect
to x<, are degree m homogeneous polynomials in x<. When any Taylor se-
ries is grouped by homogeneity with respect to x<, each group is uniquely
determined. Since only the term F (gx, gx<) in the series for b(gx, gx<) has
homogeneity m in x<, the rotation invariance implies that Fm is also rota-
tion invariant. Similarly the joint homogeneity of 0 yields fm(ax, ax<) =
a2nF..(x,x<). Since for any x,x< there is a rotation g (or reflection if d = 2)
which interchanges the rays through x and x<, i.e., g(x/Ixl) = (x</Ix<I) and
g(x</Ix<]) = (x/lxl), it follows that

xIX 2(,-,)FmX, X<) - xr,-n)FmcX1X1X</Ix IX<IXIX/Ix)
1 2m = 1) l/I2 )

-ix<l 2n ).p X ) (X<,X).

Since the final right side in this string of equalities is an m-homogeneous
polynomial in x, we see that the terms in (4) have the form IX1

2 (n-m)pm(x, x<)
with Pm a rotation invariant m-homogeneous polynomial in each of x,x<.
Hence (18) follows by Theorem 3.(iii). F1

The separation properties in (5) can now be achieved by further use of
rotation invariance. Each of the subspaces I. 12IHi, j + 2f = n, which occur
in the decomposition of Hn is rotation invariant. Hence it has a (unique)
rotation invariant reproducing kernel

dim ]Hj

k(x,y) = X1211yl 21 E f,(x)f,(y), (20)
i=O
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where {f. 12eff} and fI" 2fi I are any bases for this subspace which are bi-
orthogonally dual with respect to some rotation invariant inner product, e.g.
the inner product (16) (see [8].) But by (12) in Theorem 3.(iii), since k(x, y)
is (exactly) (f + 1)-harmonic as a function of y, and is homogeneous of degree
2f + j in both x, y,

k (x, y) =cj',j•N~~21y2X,(y), (21)

for some cj,j > 0. Equating (20) and (21) provides separation of the influence
of x, x< in the expression for Xf(x<). A consequence is separation of x, x<
in the far and near field expansions given by Theorem 6, thus allowing the
combination of the expansions for several centers x< = xi, i = 1, ... , N, into
one expansion about 0.

§4. Expansions in R 4

In this section we use the results of Section 3 in the R 4 case to outline the
explicit expansion formulae for the Of in (2) for d = 4. We start with the far
field expansion of the potential function Ix - x<1-2.

Theorem 7. For x,x< E ]R 4 with Ix<I < IxI,

IX-<1-2 
= XI-2(m mCm+1) m (x), cm 1. (22)

m=O

Proof: Since Ix - x< 1- 2 is harmonic in R4, an expansion of this form holds
for some constants cm by Theorem 6. Using Xx< (x) = Xm(x<), multiplication
by Ix - x<12 = Ix12 + Ix<12 

- Xx(x<) yields

00

1 C= _ (Cm- m1)IXI 2 mX(X<)
m=O IX----0)X<2X

+(cm2 - cmiam) I I -2(X<),

when the recurrence (10) is used and the geometrically convergent expansion
is rearranged to group terms of common homogeneity in x<. Then equating
coefficients using (iii) of Theorem 3 shows co = 1, cm = cm-1 and Cm-2
cm-lam. These must be consistent so am = cm = 1 for all m. E]

We now outline the expansion of e0 (x, x<) from (17). This gives us the
bulk of the far field expansion for On+2.

Theorem 8.

oo min{n+1,Lm/2J}

=(X, x< C=,e Xj2(i+n-m)Ix<I2x1IM2t(X), (23)
m=1 f=__

where the non-zero coefficients c', are given by the formulae in

m~ ar givn bytefrulec

and the recurrence c'+1 = Cn, a - C - Cm1 ,_ 1 + C_ 2 , 1 .

Proof: The form of all the expansions follow from (18), since On (x, 0) = 0.
The explicit determination of theC, the n - 0 case, is done in Lemma 4.4
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of [1]. The recurrence for the c 1,t follows as in Theorem 7 from (10) with
am -= 1 upon multiplication of the 7n case by Ix - x< 12. The details are in
Lemma 4.6 of [1]. El

The explicit construction of bases for 3j (and dual bases) which are
needed for the separation results can also be significantly simplified by use of
the rotation invariance perspective. A detailed development in R4 is in our
previously cited work.
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