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A Recursive Approach to the Construction of
k-Balanced Biorthogonal Multifilters

Silvia Bacchelli, Mariantonia Cotronei,
and Damiana Lazzaro

Abstract. In this paper we discuss some numerical aspects of a par-
ticular construction of balanced biorthogonal multifilters by means of the
lifting scheme. This construction allows, by simply solving linear equa-
tions, to obtain multifilters which do not need prefiltering, and for which
the discrete versions of polynomial preservation/annihilation properties,
are respectively, satisfied by their low and high-pass branches. In par-
ticular, we conduct experiments on how a parameter which appears in
our recursive definition of balancing can be chosen to suitably influence
the spectral behaviour of the multifilter low-pass branch, making it more
effective in image compression problems.

§1. Introduction

Multiwavelets are a new addition to the classical scalar wavelet theory, and
have been extensively studied in the last six years [5,9,11,17]. The main mo-

tivation for multiwavelets is that, unlike the scalar wavelet case, they can

simultaneously possess desirable properties which are found to be useful for

image compression applications, such as orthogonality and symmetry, short

support, linear phase, a high approximation order, a high number of vanish-

ing moments, etc. This combination would not be possible in any real-valued

scalar wavelet. In fact, all real-valued scalar wavelets, with only one scaling

function and one mother wavelet, can never possess all the above properties

at the same time. This flexibility of vector-valued wavelet functions is due

to the fact that multiwavelets satisfy conditions in which matrix rather than

scalar coefficients are involved.

However, multiwavelets lack some attributes that scalar wavelets possess,

and this becomes apparent when one implements the discrete multiwavelet

transform. In particular, in the scalar case, a scaling low-pass filter with an

approximation order k refers to the ability of the low-pass filter to reproduce
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discrete-time polynomials up to a degree k-1, while the corresponding wavelet
high-pass filter annihilates discrete-time polynomials up to the same degree.
This property, which is very important in many applications, does not hold
in the multiwavelet case. In fact, the approximation power property does
not assure the preservation and annihilation of discrete-time polynomials by
the low-pass and the high-pass branch of a multiwavelet-based filter bank,
respectively.

Moreover, because the approximation order for multiwavelets is not ac-
companied by the additional properties mentioned above, in applications using
multiwavelets, a preprocessing or prefiltering step is necessary to obtain an
efficient signal or image compression. A detailed investigation of prefiltering
methods can be found in the literature [12,21,7].

Recently, to overcome these problems, Lebrun and Vetterli, and Selesnick
[15,18] introduced the concept of balanced multiwavelets. They constructed
orthogonal multiwavelet bases whose multifilter coefficients satisfy the discrete
version of the approximation and zero-moments properties, and, at the same
time, avoid the use of prefilters in implementing the discrete multiwavelet
transform. This is a great advantage because the preprocessing step is a
crucial point in multiwavelet-based algorithms. In fact, this initialization can
sometimes destroy the very properties a multiwavelet basis is designed to
have. Nevertheless, the above authors' construction of orthogonal balanced
multifilters implies the resolution of non-linear equations that are solved by
the Grdbner basis method.

Following the previous authors' idea, in order to avoid the difficulties due
to the above-mentioned non-linearity, in [2] we have given a simple algebraic
construction of k-balanced biorthogonal multifilters making use of the well-
known tool called the lifting scheme. As shown in [19], the lifting scheme pro-
vides a simple method for constructing new biorthogonal filters with requested
properties, starting from an assigned set of biorthogonal analysis-synthesis fil-
ters. In [2] we have extended the lifting scheme to the multifilter case, and in
so doing, we have exploited the additional degrees of freedom left in the multi-
filter construction after satisfying the perfect reconstruction condition in order
to easily construct finite k-balanced multifilters. Our results have been stated
using the algebraic framework of banded block recursive matrices, exploiting
this flexible mathematical tool to translate both the k-balancing conditions
and other desirable properties in terms of simple linear conditions on the
multifilter coefficients.

In this paper, we discuss some numerical aspects of the procedure for the
construction of biorthogonal balanced multifilters given in [2], and analyze in
particular the effect of the choice of the shift constant p which appears in
our definition of k-balancing on the compression capabilities of this kind of
filters. In fact, shift constant p plays an important role, and it can be used as
a further degree of freedom.

Starting from Lazy multifilters, k-balanced multifilters of order 2 and 4
are constructed, and their effectiveness in image compression is tested on the
Lena image. Using numerical experiments, we observe that the p parameter
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influences the shape of the Fourier transform of the scalar filters associated
with the low-pass matrix coefficients, andi we determine the value of p in such
a way that the spectral behaviour of the newly constructed low-pass filters is
as close as possible to the optimal shape. With this selection of p, we obtain
the best compression results.

We remark that the aim of this paper is essentially to show the flexibility
of our tool in building multifilters which do not need prefiltering and which
are easily found by solving simple linear equations.

§2. Balanced Biorthogonal Multifilters

Let {7f = -• Hit', W = >i Witt} and {f-i = Ei HIiti, W = Ei Wit'} be two
pairs of block Laurent polynomials associated, respectively, with the analy-
sis and the synthesis phase of a FIR multifilter bank, where {Hi}, {Wi},

S•Hi}, {Wi} are finite sequences of r x r matrices. In the following section we

will refer to {7i, W}, {?i, W} as analysis multifilters and synthesis multifilters,
respectively, where we can think of them either as the sequences of matrix
coefficients or as their associated block Laurent polynomials.

Let R(t 2 , 7i), R(t 2 , W), R(t 2 , 7-), R(t 2, W) be the block banded Hurwitz

matrices whose generating functions are 71, W, 71, W, respectively. With these
matrices, we can give an algebraic description of the action of the analysis-
synthesis system on a block Laurent polynomial a given as input, in the
following way:
Analysis:

[o(O)] = R(t 2, -1)[a]

[o(1)] = R(t 2 , Wy)[o]

Synthesis:
[&] = R(t 2, f1)T [U(0)] + R(t 2, V)T[o.()],

where a( 0 ) and o() represent the output of the analysis phase, while & repre-
sents the output of the synthesis phase and therefore of the whole FIR system.

Given any pair of multifilters {7f, W}, define the 2-decimated matrix

A(fW) = N0 1
[WO WlJ

whose elements are the 2-decimated block series related to 71, W, that is

k= H2i+kti', Wk = ZW2i+kti, k = 0, 1.
i 2

Definition 1. We say that the pairs {71, W}, {7f, W} are biorthogonal mul-
tifilters or duals to each other or, equivalently, that they satisfy the Perfect
Reconstruction (PR) property if

A* x A(,W = C7,)x A- I.
(71W (N1) (7=,W)
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In this case, if furthermore 'H and it admit a convergent subdivision
scheme, then it is possible to define corresponding multiscaling functions and
multiwavelets from the well-known matrix two-scale relations:

4 (x) = x/R(t2 , 7) (2x), Q(x) = V2 R(t 2 ' 7) ý(2x),

IQ(x) v/_2 n(t, W) -i(2x), ;F_(x) = v/2R(t2' W) ;i(2x),

where 4(x), 4(x), i(x), 111(x) represent the vector containing the translates of
the r-vectors 4 = [€0,... _-]I, 4' = [ 0,..., Vr-_] T , 4T

S= [, ... i ir-x]T.
We now extend the concept of balancing order (introduced in [15]) to

biorthogonal multifilters. We require that the multifilters associated with
the analysis system must satisfy the discrete versions of both the polynomial
preserving and zero moment properties.

Definition 2. A pair of multifilters {17, W} related to the analysis phase of
a FIR system is said to be balanced of order k (or k-balanced), if there exists
at least one real number p such that the following relations hold:

R(t2 , 7t) x [7,] = v'2 2n[(7 + p)n],
n = 0,...,k- 1, (1)

R(t2 , W) x [7r"] = 0,

where [,ir] and [(7r +p)n] are bi-infinite column vectors which can also be seen
as r-block vectors associated with the formal block series

(ri)" (ri + p)n 1
•r E (ri +1)n• (ri +1+ p)"

-- n tZ, (tr + '). t•.
S (ri + r-1)n _ (ri + r-l+p)".

In [2] an equivalent condition to (1) has been given which turns out to be
more useful in practice:

Theorem 3. A pair of FIR multifilters {7-, W} is balanced of order k if and
o n ly if - (rJ ) n - - P n

[2 (rj+X)n n (p l) 1

+ = v/22 J , (2)

-(rj + r - 1)n _(p + r - 1)n_

m (r j) 1
M2 [ (rj + 1)n

, (rj + r - 1)W

for n = 0,...,k- 1.
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§3. Construction with the Lifting Scheme

The lifting scheme (introduced by Sweldens [19]) is a flexible tool for the con-
struction of biorthogonal bases. In [2] an extension to the multifilter setting
has been given. In short, given a set {7i, ?, W, W} of biorthogonal multifil-
ters, then the new multifilters

iie i =7+ (S 0t2 )W
Wne w - (S*T o t 2)fl, (4)

where S is any block Laurent polynomial, gives rise to a new set 1,Hf ,

Wnew, W} of biorthogonal multifilters.

Analogously, by simply changing the roles of the previous multifilters,

S7inew 7i + (. t 2)W

Wnew = -(S T o t2 )i (5)

gives rise to a new set { '-new, W, Wn, w} of biorthogonal multifilters.

We call (4) and (5) respectively the lifting scheme and the dual lifting scheme.
In [2] some useful conditions are given which allow the new multifilters

to inherit symmetry/antisymmetry properties from the starting multifilters.

We can take advantage of the previous scheme to construct new balanced
biorthogonal multifilters. In fact, unlike the orthogonal case where the balanc-
ing and the orthogonal conditions give rise to non-linear equations, which in
[15,18], for example, are solved with a Gr~bner basis approach, our balancing
conditions (2) and (3) applied to the lifted (or dual lifted) multifilters give rise
to linear conditions. The main steps of our approach are:

1) Construct the new low-pass multifilter coefficients, using the dual lifting
scheme;

2) Apply the balancing condition (2), and solve the linear equations to find
the coefficients of the unknown dual lifting matrix polynomial;

3) Construct the new high-pass multifilter coefficients, with the lifting
scheme;

4) Apply the balancing condition (3), and solve the linear equations to find
the coefficients of the unknown lifting polynomial;

5) Construct the corresponding dual low and high-pass multifilters.

It is important to note that in applying the balancing condition (2),
a value must be assigned to the shift parameter p. In our experiments, it
turns out that p influences on the effectiveness of the multifilters in their
applications.
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Fig. 1. Iho0 + 1•11 associated to the Lazy 2-balanced low-pass multifilter with a
varying p: from left to right, p = -1, 0.25, 1.

§4. Examples

In the following example, we start from Lazy multifilters to obtain balanced
biorthogonal multifilters of order 2 and 4, which, furthermore, are of the type
symmetric/antisymmetric (see [2]).

We restrict to the case r = 2, and define Lazy multifilters as follows:

27= fi = vf2I, W = 2W = V/It.

In order to show the influence of p on the performance of the new multifilters,
we introduce the notation

h'2k+ = [Hksm,., k E 2Z, m, n = 0, 1,

which give the two low-pass scalar filters h°o {h=}k h z, h1 
- {h'}kEzZ ob-

tained by reorganizing the set of 2 x 2 low-pass matrix multifilter {Hk}kczE,
as a multichannel scalar filter bank.

As shown in the following figures, the shift constant p influences the shape
of the Fourier transforms of h°'"', h'new, making them more or less suitable
for application problems.

In Figure 1, we show 3 graphs of the sum Iho°new1+Ihl,new1, with p varying
in {-1, 1/4, 1}. It can be seen that the choice p = 1/4 gives visually a better
low-pass behaviour. In this case the new coefficients (except for a factor Vf)
are

0 4 8
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Fig. 2. Ih0° + I1hI associated to the Lazy 4-balanced low-pass multifilter with a
varying p: from left to right, p - 0, 0.4,0.8.

S1] 10
FA _L 1 1 31L r_ 21 0

Wnew ' 64 32 I_1 4 16 + 32 t+

3 53 12

32 64 ] [16 4- 3"2

4 16 64 _31 64t3'
_I _3 _ 45

16 4 32 12

Snew 64 t-2 t_+ 4 -1-6 32+

_L• -1 L 5 1 0 21 +

32 64 16 4 1 3"2

4 3 t + 64 32-•

= - 4 ] + [2 0] t+ [1 1 ] t2.

A second example (Fig. 2) shows the behaviour of the scalar low-pass
filters associated to the Lazy 4-balanced multifilters, with different choices for
the parameter p. In this case, the choice p = 0.4 provides the best behaviour
of the low-pass filters.

We have experimented with the above multifilters in an image compres-
sion example (on the Lena image), by making use of a multiwavelet-based em-
bedded coding [6]. Results obtained with the best choices of 2 and 4-balanced
Lazy multifilters are compared, at same compression ratio 1:16, with those
produced by Chui-Lian (CL) [5] and Geronimo-Hardin-Massopust (GHM) [9]
multifilters. CL and GHM multifilter both have approximation order 2, but
need prefiltering. For comparison purposes, this prefiltering step has been
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Fig. 3. Reconstructions of Lena compressed with different bases. From the top
left corner: 2-balanced Lazy multifilter with p = 0.25; 4-balanced Lazy
multifilter with p = 0.4; CL without prefiltering; GHM without prefilter-
ing.

1C.R. 2-bal. Lazy 4-bal. Lazy CL without pref. [HM without pref.
16 26.61 28.12 11.79 21.72

Tab. 1. PSNR values (in dB) with different multifilters.

omitted, in order to show how a prefiltering is absolutely necessary when
dealing with non-balanced multifilters.

These results are shown in Table 1. Figure 3 shows the reconstruction
of Lena compressed with the above-mentioned bases. It can be seen from the
table and the figure that 2-balanced Lazy multifilters behave better than CL
and GHM. Better results are of course achieved by the 4-balanced multifilters.

In the above experiments, we have not taken into account the orthonor-
mal balanced multiwavelets of Lebrun-Vetterli [16] (which definitely give the
best results, due to their good spectral properties), since our aim was not to
construct the best possible filters, but to show the flexibility of our tool in
building multifilters which do not need prefiltering and which are easily found
by solving simple linear equations. One can obtain more effective filters with
this procedure by extending the length of the lifting polynomials, and by using
one of the many well-known good strategies for filter construction.
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