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Building Adaptive Multiresolution Schemes
within Harten's Framework

Francesc Arhndiga and Rosa Donat

Abstract. We consider the cell-average framework described by
A. Harten in [5], and build the prediction operator using two nonlinear
interpolation techniques. We test the resulting nonlinear, adaptive, mul-
tiresolution scheme, and compare it with a linear scheme of the same
accuracy. The nonlinear prediction processes we develop can also be used
in the context of iterative refinement. Numerical tests show that this is
also a viable alternative for piecewise smooth data.

§1. Introduction

The goal of a multi-scale decomposition of a discrete set of data is a "re-
arrangement" of its information content in such a way that the new discrete
representation, exactly equivalent to the old one, is more "manageable" in
some respects. Some of the best known applications of multi-scale decomposi-
tions derive from their compression capabilities: a multiresolution representa-
tion of a function, i.e., of a discrete set which represents the function in some
sense, can be highly compressed with minimal loss of information content.
Precisely because of this potential, multi-scale techniques have an emergent
role in numerical analysis, where the multi-scale idea has been used success-
fully over the years, from multigrid techniques to hierarchical bases in finite
element spaces or subdivision schemes in Computer-Aided Design (CAD).

In the late 80's and early 90's, ideas from all these fields, together with
a wide experience in the numerical solution of Hyperbolic Conservation Laws
(HCL) lead Ami Harten to develop a General Framework for multiresolu-
tion representation of discrete data. The building blocks of a multiresolution
scheme a la Harten are two operators which connect discrete and continuous
data: The discretization operator obtains discrete information from a given
signal (belonging to a particular function space) at a given resolution level;
the reconstruction operator produces an approximation to that signal (in the
same function space) from its discretized values.
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Harten's point of view is that the way in which the discrete data is gener-
ated, i.e., the discretization process, determines its nature and should provide
an adequate setting for a multiresolution analysis. Once the setting is spec-
ified, the choice of an appropriate reconstruction operator provides the key
step to the construction of a multiresolution scheme.

The reconstruction process lies at the very heart of a multiresolution
scheme built a la Harten, and adaptivity can be introduced in the multires-
olution scheme at this level. A nonlinear, adaptive reconstruction technique
which fits the approximation to the local nature of the data will lead to a
nonlinear adaptive multiresolution algorithm with improved compression ca-
pabilities.

The aim of this study is to examine a particular class of nonlinear adaptive
multiresolution schemes, those using the Essentially Non Oscillatory (ENO)
interpolatory techniques of [6] in the reconstruction step. Numerical experi-
ments [1,2] show that ENO-MR schemes have larger compression rates than
linear ones when the original signal or image is composed of smooth parts
joined together by singularities. ENO techniques can be used to construct
very accurate interpolants, which in turn lead to multiresolution schemes with
high compression capabilities. When the original signal is geometric, nonlin-
ear schemes can be used as loss-less compression techniques, and we show
some application of this in the last section of this paper.

The nonlinear prediction process can be used also in the context of sub-
division refinement. This amounts to setting to zero all scale coefficients and
using the prediction operator to proceed by dyadic refinement. Preliminary
tests show that these nonlinear subdivision schemes lead to non-oscillatory
limiting functions when applied to piecewise smooth data with jumps, and
open up an interesting alternative for iterative refinement of piecewise smooth
data.

§2. Cell Average Multiresolution Analysis

When dealing with discrete data coming from a piecewise smooth function,
the simplest discretization process, that of considering the point-values of the
function, might not be well defined, especially at jump discontinuities. On
the other hand, the discretization by cell-averages procedure acts naturally
on the space of integrable functions, and it provides a more adequate setting
to deal with piecewise smooth signals. Because of this, we shall carry out our
numerical study within the cell-average framework.

Images are considered here as two-dimensional signals, and we use the
usual tensor-product approach to design our two-dimensional algorithms.
Thus, we only describe the essential features of the one-dimensional setting
for the sake of completeness. The interested reader can find the missing details
in this section in [2] or [5].

Let us consider a set of nested dyadic grids in [0,1]:

Xk ={�xk}N%, 4 = ihk, hk = 2k/No, Nk=2kNo, k=L, .,0,
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where No is some integer. The discretization by cell average operator is defined
as follows:

Vk: L'[0, 1] -_+ Vk, lfk = (Dkf)i f(x)dx, 1 < i < N-, (1)

where L' [0, 1] is the space of absolutely integrable functions in [0, 1] and Vk

is the space of sequences with Nk components.
Due to the relation

Xk-1 k

-k- 1 1 ' xd 1 Ik i)
f -, = f(x)dx = -L f(x)dx = +(f-1 +

h k-1 2hk 2••

it is easy to see that {fk}Nki k = L - 1,. ,0, can be evaluated directly from

{JL}NLI without using explicitly (1) (i.e., without knowledge of the original

function f(x)).
To define an appropriate reconstruction operator for this setting (in fact,

a whole family of them), we consider the sequence {Fjk} on the k-th grid
defined from the cell values {f k as follows:

S=hk k f(x)dx = F(x) - F (2)
s=1 Jox hk

The function F(x) (E C[0, 1]) is, in fact, a primitive of the original function
f (x), and the sequence {Fk I represents a point value discretization of F(x)
on the k-th grid (with Fk = 0). Notice that (2) establishes a one-to-one
correspondence between {fj}jN0 and {Fk}jN•.

Let us denote by I(x; Fk-l) an interpolatory reconstruction of the set
{Fk-l} on the grid Xk-l, i.e., I(xý-l; Fk- 1 ) = Fik-l. Then, we obtain an
approximation , fif, to fik using (2) as follows:

Ik = (I(X, k-1 ) - (x k -l,fk1))/hk. (3)

Since F• - F(x i) = F(x-) = F,-l, we obtain

fkji_1 and -ki = 1 k(Fkl- I(x ,Fk-1)).

(4)
Let us define the prediction errors as e := -k - .f. Using (2) and (4), we

easily obtain

2_I- f =~ (12i - 12i).

Thus, we can simply store only the prediction errors with odd indexes; these
are the scale coefficients, dý = ei-1, of the multiresolution transform.
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The multiscale decomposition of the original data fL is described by the
encoding algorithm:

Do k = L,..., 1
(ok-=L 2 (kji_ + 12i) 1 < i < Nk-1 (5)

dk = fk-_ - (-(xk -1;Fk - Fki_1)/hk 1 < i < Nk-1.

We recover the original data with the decoding algorithm:

Do k= L

fi --( l Fk)/h + d 1 < i < Nk-1 (6)
f 2 i = 2fik-1 - 1ki_1 1 < i < Nk-1.

In our study we consider only local interpolation techniques with La-
grangian polynomials, i.e.,

I(x;Fk) = qi(x;Fk) X E [Xi 1,Xi],

where qj (x; Fk) is a polynomial of degree r satisfying qi (xi 1; Fk) = F•-1 and
qi(4;,Fk) = Fk.

When the stencil of points used to construct qi(x) is symmetric around
the ith interval (i.e., r = 2s- 1, S = { i-s,".. , x-1}), we obtain a centered

interpolation technique. Centered interpolation techniques are very often
used in approximation theory because they minimize the interpolation error,
thus leading to very accurate reconstructions of smooth signals. It turns out
that the multiresolution schemes obtained from (5) and (6) with Lagrangian
piecewise polynomial centered interpolation techniques are equivalent to the
Biorthogonal Wavelet (BOW) schemes of [4] (with the box function as the
scaling function).

The compression properties of BOW schemes have been widely analyzed
in the literature, but from an approximation theory standpoint, it is very
easy to study the behavior of the coefficients in terms of the smoothness of
the underlying signal and the accuracy of the interpolation technique. Notice
that the scale coefficients dý are related to interpolation errors at the odd
points of the k-th grid. In fact,

dk = (F•_1 - I(xki_; F- 1))/hk.
i _1 _, 2 k_1 ; )Ik-!

Thus, if f(x) is sufficiently smooth at [xk- 1 ',x 1 ], we have di = O(h 1_J).

However, the presence of an isolated singularity Xd C [xk--'4,-x 1-] induces a
loss of accuracy in the polynomial pieces whose stencils cross the singularity.
The accuracy loss is related to the strength of the singularity as follows [2]: if

Vf(P)]xd = f(P)(xd+) - f(P)(xd+) = 0(1) (p _- r), and f is smooth everywhere
else, we have

dk= 0([f(P)])hPkl, l=i - s, ... , + s-,
di O(hr_l), otherwise. (7)k
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Thus, centered interpolation techniques lead to relatively large regions of
poor accuracy around singularities, and therefore to large detail coefficients
at those locations where the accuracy loss takes place. The consequence is a
loss in efficiency for the multiresolution-based compression scheme.

It seems reasonable to improve the efficiency of the multiresolution-based
compression scheme by improving the accuracy of the interpolatory technique
used in the reconstruction step. Notice that when the convex hull of the sten-
cil used to construct a polynomial interpolant is contained within a region of
smoothness of the underlying signal, the interpolation error (and the corre-
sponding detail coefficient) becomes small. Thus, it is clear that the key point
is the construction of polynomial pieces that avoid the singularity.

In the literature related to the numerical solution of conservation laws,
where discontinuities can spontaneously develop, we find an interpolation pro-
cedure with all the features we need: Essentially Non Oscillatory (ENO) in-
terpolatory techniques [6] (it is not surprising that Harten was one of the
developers of these techniques).

ENO interpolatory techniques lead to piecewise polynomial interpolants
that are fully accurate except in those intervals that contain singularities.
The essential feature of ENO interpolatory techniques is a stencil selection
procedure that attempts to choose each stencil Si within the same region of
smoothness of F(x). The stencil selection process uses the divided differences
of the discrete set to be interpolated as smoothness indicators: Large divided
differences indicate a possible loss of smoothness. The selection process is
such that it tends to look away from large gradients, when this is feasible.

ENO interpolatory techniques are nonlinear, because the stencil used
to construct each polynomial piece depends on the function being interpo-
lated. When the singularities are sufficiently well separated (this means that
there are at least r + 1 points in each smoothness region), ENO techniques
lead to stencils such that (assuming the singularity is located at the ith cell)
8 i-1 n Si+1 = 0. Hence, the detail coefficients satisfy

f{ O([fP])hp, 1= i,

O(hr_,), otherwise. (8)

Thus ENO interpolants have a nearly optimal high accuracy region, which
should in turn improve the efficiency of the corresponding multiresolution-
based compression algorithms.

The case of a corner of f (i.e., a jump in f') is especially interesting
because it is possible to construct an even better (in terms of local accuracy)
interpolant: the ENO-SR interpolant.

The Subcell Resolution (SR) technique (also due originally to Harten [3])
allows us to obtain an approximation to the location of an isolated corner in a
continuous function up to the order of the truncation error. The approximated
value is then used to modify locally (in the interval where the discontinuity
lies) the definition of the piecewise polynomial interpolant in such a way that
the interpolation error is small except for an O(hr+l) band around the corner.
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Fig. 1. Left original, right coarse version.

I i . ..

Fig. 2. Left linear, right ENO.

Recall that in the cell-average setting, the interpolation process is applied
to the primitive function. Since jumps in f(x) become corners in F(x), using
an ENO-SR interpolant in the reconstruction step lead to detail coefficients
satisfying

d- O(h 1 ), except when x_1 - Xd. (9)

The SR technique is, thus, appropriate to increase the efficiency of mul-
tiresolution-based compression algorithm for piecewise continuous functions
with jumps.

§3. Numerical Experiments

Let us consider a purely geometric image as shown in Figure 1 (left), and
apply to it the tensor-product version of algorithm (5). We consider piecewise
polynomial interpolants of degree 4, thus the accuracy of the reconstruction in
the cell-average framework is 3. In Figure 2 we display the location of non-zero
scale coefficients in the multiresolution representation of the signal. When
using the ENO-SR technique, and because all discontinuities are "aligned
with the (tensor-product) grid", all scale coefficients are zero. This is a direct
consequence of the fact that the ENO-SR reconstruction commits no error at
the odd points in each one of the resolution levels considered (L = 4 in this
example). In the case of the ENO scheme, the scale coefficients at the highest
resolution level are all zero. This is a consequence of the nature of the data
(the point-values of the signal at the highest resolution level), which locates
all discontinuities at the cell end-points. The ENO technique is perfectly
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Fig. 3. ld Linear, ENO, ENO-SR.

Fig. 4. Reconstruction from the coarse: linear, ENO, ENO-SR.

accurate when the discontinuity is located at a grid point. The technique is
fully accurate at all the lower resolution levels except at the interval where
the discontinuity is located. Thus, there is only one scale coefficient, located
at the point which is closest to the singularity. This should be compared
with the 3 scale coefficients per singularity obtained with the linear scheme
(the lines showing the location of non-zero scale coefficients are thicker for
the linear scheme). For the sake of comparison, the number of non-zero scale
coefficients in each case is: Linear 8554, ENO 1688, ENO-SR 0.

We turn next to the nonlinear subdivision scheme obtained by considering
the ENO and ENO-SR in the prediction process. In Figure 3 we show a
univariate process. Starting from the the cell-averages of a piecewise smooth
function at a very coarse level (16 points), we proceed by dyadic refinement
until we obtain 1024 data. The numerical results clearly indicate that no
overshoots or undershoots are obtained with the non-linear techniques. Again,
the excellent properties of the ENO-SR technique in terms of approximation
lead to the best results.

In Figure 4 we show a simple multivariate test, the reconstruction of the
geometric figure considered before from a very coarse representation (right in
Figure 1). The Gibbs-like oscillations typical of linear schemes in the presence
of discontinuities lead to the blurring of the edges observed in Figure 4 (left).
There is no blurring in the reconstructed image obtained with the nonlinear
techniques. Again, the ENO-SR scheme leads, in this simple case, to the
exact original image. One dimensional cuts of the reconstructed figures are
displayed in Figure 5.
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Fig. 5. Horizontal cuts linear, ENO, ENO-SR.
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