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A Segmentation Method under Geometric
Constraints after Pre-processing

D. Apprato, J. B. Betbeder, C. Gout, and S. Vieira-Teste

Abstract. For a geophysical image with homogeneous grey levels, we
propose a method of segmentation that could be subdivided into two parts:
the first one concerns a pre-processing of the image which provides an
enhancement of some features present on the image. The originality of the
method consists in using a scale transformation applied to the pixel values
of the image. The second part presents a segmentation method using
deformable surfaces. The originality of this segmentation method is that
it considers the active contour model as a set of articulated curves, which
corresponds to the interfaces between different layers and faults. Moreover,
the a priori knowledge of well data allows us to make some geometric
constraints on the model. The solution is obtained by minimization of a
nonlinear functional under constraints in a suitable convex set. Solving the
minimization problem consists in particular in a k-order Taylor formula
applied to linearize the nonlinear term.

§1. Segmentation Pre-processing

Image segmentation is one of the most important steps leading to the analysis
of processed image data. Its main goal is to divide an image into parts that
have strong correlation with objects or areas of the real world contained in the
image. The image is divided into separate regions that are homogeneous with
respect to a chosen property such as brightness, color, reflectivity, context, etc.
However, in certain cases, the grey levels of an image could be homogeneous
and make the segmentation more difficult to realize. This is particularly true
in the case of geophysical and medical images (cf. [14,15]). In the first part of
this work, we propose a method to solve this problem using families of scale
transformations. The use of scale transformations is common in imaging. The
aim of this pre-processing is an improvement of the image function data that
suppresses unwilling distortions, or enhances some image features important
for further processing. It provides improvement of the contrasts, and it rep-
resents a tool to pre-process images used in most computer algorithms today.
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According to Sonka, Haclav and Boyle [15], the pre-processing of images may
be classified into four categories (pixel brightness transformations, geometric
transformations, pre-processing methods that use a local neighborhood of the
processed pixel, and image restoration that requires knowledge about the en-
tire image) according to the size of the pixel neighborhood that is used for the
calculation of a new pixel brightness. The transformation of the brightness
and of the contrast of an image allows us to focus on phenomena that are hard
to see in the plain image.

For a given image, we are going to consider the pixel values as a topo-
graphic map: the brightness value of each pixel is the height of the (hyper-)
surface at that point. For a data set of pixels (xi,yi, zi, A (xi,Yi, zi)), we
apply the following functions:

"* Cd: A(xi,yi,zi)i C [0,255] -- [0,255],
"* Td (Vd o (•doA)) c H m (Q, R),
"* 'd (Td (Vd o (ýdoA))) converges to C o A when d converges to 0,

where A is an attribute function introduced in Section 2.1, ;d (resp. Vd and

Od) are scale transformations converging to ý (resp. p and ¢), and Td is a
Dm spline operator (see Arcang~li [2]).

The scale transformation ;d converges to a usual brightness transforma-
tions ; (see Apprato and Gout [1]): for instance, C could be a scale transfor-
mation which enhances the image contrast between brightness values Pi and

P2.
Let us consider the subdivision {ul,u2, ... ,ui, ... ,Up(d)}i=l,...,p(d) of the

interval [0,255] satisfying C(A(x?,yj,zi)) = ui, p(d) being the number of
different pixel values of the image (: 255 for a grey scale image). The function
(d is defined, for any x E [A(xi,yi,zi) = wi,A(xi+l,y±i+,zi+l) = wi+1], and
for an integer 1 < i < p(d) - 1, by

Cd(x) u• iqgom [(x - wi) / (wi+I - wi)] + ui+lqlrn [(x - wi) / (wi+l - wi)]

+ 0, (wi) (wi+i - wi) q' [(x - wi) / (wi+i - wi)]

"+ a, (wi+I) (wi+l - wi) qlrn [(x - wi) / (wi+I - wi)]

where the q3m, for 1 = 0, 1, and j = 1, ... ,m, are the Hermite finite element

basis functions, and where a, (wi) = (u+i- -ui)/ (wi+l - wi) and a, (Wp(d)) =

(Wp(d) - Wp(d)-1) / (up(d) - Up(d)-1). Then, Gout [9] showed that for any d E
D, for an integer i, 1 < i < p(d) - 1, Cd (wi) = ui and Cd e C m ([0, 255]).

Likewise, in order to recover a finer image, it is useful to apply the "large
variations" algorithm introduced in [9]. In fact, after having applied the func-
tion Cd to improve the contrast of the image (and thus increasing the variations
of the corresponding pixel values), it is very useful to use a method that takes
into account these rapidly varying data. Let us note that even without using
the scale transformations (d, an image often has large variations (this occurs
for example when a dark zone is near a brighter one). That is why we propose
to use the "Large variations" algorithm. This algorithm uses two-scale trans-
formations, namely Wd for the pre-processing, and Od for the post-processing.
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The first one, Vod, is used to suppress the oscillations of the data. The pre-
processing function SVd is such that the data do not present large variations,
and therefore a usual spline operator Td (e.g. [2]) can subsequently be applied
without generating significant oscillations. The second scale transformation

Od is then applied to the approximated values to map them back and obtain
the initial approximated pixel values. It is important to underline that the
proposed scale transformations do not create parasitic oscillations. Moreover,
this method is applied without any particular knowledge of the location of the
large variations in the dataset.

So, for pre-processing, we propose two algorithms: in the first one, we just
apply a scale transformations (d as a brightness transformation for contrast
enhancement, in the second one, we also apply the "large variations" algorithm
in order to obtain a finer represention of the image which represents the main
advantage of this approach.

The reader is referred to [1,8,10] for a complete study of this method,
including its convergence and numerical results. Let us note that this method
is also efficient for noise removal as shown in [1].

§2. Segmentation Method

We use deformable models (external forces, evolution term, see Kass, Witkin
and Terzopoulos [16,17]) and classical approximation techniques such as spline
theory (see de Boor [3], Laurent [12], Schumaker [13]) and the finite element
method [4].

We propose an analytic approach which uses deformable models instead
of a geometrical one as done for instance in Sethian [14]. We recall that the
principle of the deformable model method lies in attracting the representation
towards the structure using forces:

"* Internal forces describing properties of elasticity and rigidity of the rep-
resentation, connected to its derivatives (e.g., the energy of thin plates);

"* External forces coming from potentials which characterize the elements
of the structure with respect to the attributes data.

Geometrical constraints are associated with well interpolation conditions
(case of geophysical images with well data). Deformable models provide a way
of interactively acting on the representation by adding a dynamic term in the
minimization problem (see for instance Cohen and Cohen [5], Cohen, Cohen
and Ayache [6], and Cohen, Bardinet and Ayache [7]), that permits upgrading
the models to the solution of the minimization problem introduced.

In this section, we first give the geophysical data and then the minimiza-
tion problem is studied. The nonlinear problem and its discretization are
given in the subsequent sections.

2.1. The data on the structure

Two types of data are available: attribute data and well data. For each at-
tribute A, the attribute data are (xi, yi, zi, A (xi, yi, zi)) , where (xi, yi, zO) are
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the coordinates of the barycentre of a voxel, and A (xi, yi, zi) is the attribute
value A in this voxel. The well data are depth data:
(Xj,yj, zj). 1 , N = aj where N is the number of interpolation points. This
model allows a conceptual representation of the structure by identification
of its various elements, and permits topological connections between those
elements. This model induces the parameterization of the structure. Each
element of the structure (layer, fault, etc.) is identified with a connection of
four points with a label E. Furthermore, each quadruplet is connected by two
points (which can be thought as a common side of a "quadrilateral" repre-
sented by the four points) with another quadruplet. Practically, the a priori
model can be constructed by introducing a 3D block and a regular grid of this
block. The aim is to find a space of admissible representations consistent with
the a priori model and the criteria connected with the data. Therefore, it is
necessary to choose a space of functions characterized by a domain of defini-
tion connected with the a priori model and regularity conditions connected
to the data. The idea is to transform the a priori model into a normalized
model called the model of reference (denoted by M'). For example, we can
choose M' C = = [0, 1] x [0, 1] x [0, 1]. The model M' is then the image by
transformations of the set of vertical and horizontal closed sides of the a priori
model as done in [18]. Let 7' be the union of the common edges of any two
sides of M', we define by M the interior of M' \ y. All the functional spaces
needed in this work are given in Vieira-Test6 [18].

2.2. Minimization criterion

2.2.1. Internal forces: The criterion associated with the internal forces
is a classical one. Modelling this criterion bring us to the following energy
functional: for any v E V = H 2 (M,]R 3 ) n C0 (M',1R 3 ),

E1 (v) [V],M + [V]2,M,

where

[V] 1, ( _i() IM IK)+K ) dsdr)1/

and

(Z2V~ [ 2K+: 92 )2 + (,/2V d2 s 1/2
IV12,M E2 (E) f/ ÷ 2 rOs 3 a r2 3j

with -i (E) > 0, Vi = 1,2, VE E M. The term [v]1 ,M corresponds to an
approximation of the elastic deformation of the model while the term Iv]2 M

corresponds to an approximation of the rigid deformation of the model (cf.
Cohen, Cohen and Ayache [6]).
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2.2.2. External forces: External forces are issued from potentials connected
with attributes. We introduce the following energy, for any v E V,

E2 (V) f Pr (v/r (s, r)) dsdr,

where PE is the potential associated with the element parameterized by E.
The modelling we propose consists in minimizing the previous energies E1

and E 2 as we will see in subsection 2.2.4. In the case of the velocity attribute,
we use the following potential to define the layers:

2

P(x,y,z)=-a V1-(x,y,z) , a>O

where A is the attribute "velocity of propagation of the seismic wave".

2.2.3. Interpolation data: If we suppose some parameterization (sj, rj) E
M of each interpolating point aj = (xj, yj, zj) is known, then we require that
v E V satisfies v(sj,rj) = aj for any j = 1,...,N.

2.2.4. Minimization criterion: Using the notation and definitions intro-
duced above, we consider the functional E defined on V by

E( [V]),M 1 [V]2M + PE (v/1 (s,r)) dsdr

for any v E V. We consider the set K associated with the interpolation
constraints, and defined by

K={vEV, Vj=I,...,N, v(sj,rj)=aj}.

This set is convex and closed in V. We also introduce the following linear
mapping (continuous on V with the norm 11"]12,M)

po0: v E V - pov = (V(Sjr1)) .. ,N E ( 1R3)N

We consider the following minimization problem: find a E K satisfying

VvEK, E(a)•E(v).

We note that this problem is nonlinear on the convex set K with respect
to a. There are two techniques to treat this problem. The first one consists in
linearizing the nonlinear term (linked to the potentials) in the functional E.
The second one consists in using the deformable models technique as done in
the following subsection: we suppose that the solution is a function of time,
which leads to a new evolution problem that will be discretized both in time
and space.
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2.3. The nonlinear problem

In this subsection, we give the nonlinear minimization problem and its dis-
cretization. Let us recall that the deformable models technique consists in
assuming that o depends on time, and so consists in adding a dynamic term
to the functional E (a)

1 IM (M) a 2 (t, s, r) dsdr,

where (E (M))/E = E (E).> 0. This term allows the control at each time of the
deformation of the surfaces.

2.3.1. Evolution problem: Let T > 0. We note

W(O,T,V)= w C L 2 (]0, T],V), E L(]0,T V')

We then consider the following evolution problem defined on [0, T]. For any
t c ]0, T] and any w E W(0, T, V), find a C W(O, T, V),a (t) c K, satisfying
(Pt):

E (a) + e - J (M) a 2 (t, s, r) dsdr < E (w) + 1 f- F (M) w 2 (t, s, r) dsdr,

with
a (0) = a0 E L 2 (M, 1R3 ).

We are currently studying existence and uniqueness of (Pt) using a Lipschitz
approximation of the sign function.

Likewise, for any t e ]0, T], we consider the term

L,(t) (v) = - 1 f Pr (v 1/(s, r)) dsdr.

The variational formulation of the problem (Pt) with Kuhn and Tucker's
relation is, taking as test function v on the stationary space V (necessary
condition without uniqueness), for any t E ]0, T] and any v C V, find (a, A) C

W (0,T, V) x CO ([0, T], (i3)N) ,a(t) C K, satisfying (P):

fM (M) Et v(s, r)dsdr + a(a(t), v) + (A (t) , POV) N,3 = L,(t) (v)

under conditions
a (0) = ao E L 2 (IR3)

and
A (0) = \ 0 E (]R3)N
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where
1 2 2
2a (u, v) = [ [,M

2.3.2. Discretization in time: In this subsection, we discretize (P) both
in time and space. The originality of this discretization consists in using a
k-order Taylor development which allows us to take into account many more
voxels and so to improve the convergence of the method (see Vieira-Teste [18]
for more details). We cut the interval ]O, T] into sub intervals with length At.
Consider

tm=mAt, m=I,...,DT.

We use the following approximation of the time derivative:

19 (tW) - U(tmi.)

-t At

Assuming that a m = a (tin) and Atm = A (tin), we approximate the
variational problem as follows: For any m = 1, ... , DT and any v E V, find

(a m ,Am ) E V x (IR3)N ,am E K, satisfying (Pm):

Im- M )ovdr + At Ha~om, v) + (Am,POV) N,3I

=: I (M) m '-lvdsdr + AtL m (v)

with o° = u0 EL 2 (M,1R 3) and A°= A0 € (Ja)N

The previous problem is implicit and nonlinear with respect to the so-
lution am. We propose to replace L,_ (v) = L,,, (tin) by a Taylor series
expansion of order k > 0 about the time tin. We suppose that a is in
Ck ([0, T] , L2 (M, R 3)). We have

L,_ (v) = L (tm)

and Lo-,v (tm) ý- L,,, (tm-1) + AtDL,,v (tmin-) + (At) 2 D2L,,,, (tmi-) +"" +

(A. DkLL,,v (tmi-). We note that the problem (Pm) is linear and explicit
with respect to am. The following result is based on the Lax-Milgram Lemma.

Theorem. The problem (Pm) has a unique solution (Urm, Am).

2.3.3. Discretization in space: Let H be a nonempty bounded subset in
]R_ for which 0 is an accumulation point. For any h c H, we solve the min-

imization problem (Pm) in the finite element space (Vh) 3 C V. The generic
finite element are the Hermite finite element of class C1 for snakes and the
Bogner-Fox-Schmit finite element rectangle of class C' (see [4]) for deformable
surfaces. To have (Vh) 3 C V, it is necessary to have a C' connection on -y. To
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do that, it is sufficient to divide some degrees of liberty connected to deriva-
tives as done in [18).

We denote by (a ., ..., a'h) the coordinates of ua in the basis of Vh and
by (A ., ..., A') the coordinates of Am  (Mh = dim(Vh)). If u' is a solution

of the discretized problem (Pm,) in (Vh) 3 , we can write aom in the basis of
(Vh)3: Vm---1, ... , DT, Vq =1,2, 3,

Mh

j=1

with (amfq E IR and where the (soJ)j,.Mh, are the basis functions of Vh.

In the following, we miss out q and h. Taking v = V1 in (P), we have
to solve (for q = 1,2,3, in the linear problem (P)) a system of (Mh + N)
equations with (Mh + N) unknowns. We easily show that this system has a
unique solution, and that the matrix R = [C, B,' B, 0] (first line : C, B; second
line : 'B, 0) of the system is symmetrical and sparse with

Ci,! = [Vj,,p1]OM + Ata (j, W), i,j,l = 1,...,Mh

B3 ., = At" - j (si, ri), j = 1, ... ,Mh, i=--1, ... , N,

where for any u, v E (Vh) 2 ,

[u, V]OM = fM e (M) . u(s, r) v(s, r)dsdr,

and where T = (am, .a A1, AN) is the unknown vector. We obtain a
linear system RT = L, where the lines of L are

fM (M) am-lp dsdr + AtL•, (Vi),

m e(M) a's-'Mhdsdr + AtLm (Mh,.),

/Ata1l,

AtaN.

This method has been implemented in fortran, C and C++. Numerical ex-
amples on real data are given in [11,18].
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