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Extending Lawson’s Algorithm to Include
the Huber M-Estimator

Tain J. Anderson, John C. Mason,
and Colin Ross

Abstract. When fitting a curve to experimental data, there is no
guarantee that the data obtained are as accurate as might be expected.
The effect of outside influences may cause the data set to contain outliers.
These outliers can have a significant effect on any curve which is fitted
to such data. The £o-norm, which is particularly appropriate for fitting
data with uniformly distributed errors, is extremely sensitive to such out-
liers, since it minimises the maximum error from the data to the curve.
Therefore, a technique which approximates a data set using the £oo-norm,
without being adversely affected by outliers, would be a useful addition to
the array of tools available. We present numerical examples to illustrate
the use of such a technique and also some practical applications to justify
its use.

§1. Introduction

It is widely accepted that the {,.-norm is the most appropriate measure of
the error when approximating data which are very accurate or have errors
sampled from a uniform distribution. Unfortunately, because the o, norm is
extremely sensitive to outliers, it is not suitable for use in fitting experimental
data containing such points. Nevertheless, it may be the case that the £o-
norm is the most appropriate error measure for the non-outlying data, and so
we present an algorithm for finding an £, fit to the non-outliers of a data set.

The algorithm itself is based on a combination of the Huber M-estimator
[6] and Lawson’s algorithm [7]. There is considerable literature on both tech-
niques as separate subjects, and we mention here only a selection. Lawson’s
algorithm was first analysed by Lawson [7] in 1961, and was later studied
by Rice and Usow [11], Cline [2] and Ellacott [4]. Similarly, the Huber M-
estimator was developed by Huber [6] in 1964 and has received considerable
attention in the form of algorithms for its solution as well as analyses of its
behaviour. Papers by Clark and Osborne [1], Ekblom [3], Madsen and Nielsen
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[9], Michelot and Bougeard [10] and Li [8] all look at the Huber M-estimator
either in its own right or as one of a class of robust estimators.

In this paper, we consider the problem of fitting a function of the linear
form f(x) = 375 cid;(x) to a set of data {(z;,y;)}12;, where the {¢;} are a
set of basis functions. To this end, we minimise the residuals r; = y; — f(z;).
What our algorithm achieves in practice is to obtain an £, fit for those r; such
that |r;| is less than the Huber parameter v, say, and effectively to ignore the
remaining data.

The circumstances that require such an algorithm occur in practice, par-
ticularly in metrology where extremely accurate readings can be obtained (by,
for example, a CD reader) but are subject to the occasional outlier (due, for
example, to optical effects). These outliers usually only appear in groups of
one or two, so they are isolated, which leads to an easier problem than if they
appeared in larger groups. Another metrological situation where this algo-
rithm can be applied is in the measurement of a cylinder in an automotive
engine where there is approximately 95% very accurate data, and 5% outliers.
Naturally, these problems might require a slightly different fitting technique,
but this algorithm is a useful starting point from which more general fitting
procedures may be developed in future work.

§2. Background

In this section, we discuss some aspects of both Huber estimation and Lawson’s
algorithm. In the next section we describe how to combine the two techniques
to create a new algorithm which satisfies our requirements.

The Huber M-estimator
The Huber M-estimator is based on the Huber function
t2/2, if [t <1,
o= { ! M)
lt| —1/2, if|t|>1,

introduced by Huber [6] in 1964, and is defined in the following straightforward
way:

E=3_plre/), (2)

where r; is the residual in the ith datum, and - is the Huber threshold defining
the distinction between “accurate” and “inaccurate” data.

There are several algorithms to solve the problem of minimising (2) with
respect to c, several of which are described by Li [8]. However in this paper,
we limit ourselves to the Newton method. This involves solving [8]

1
-—ZATDAp = lATV
v v

at each iteration, where A is the design matrix with entries A;; = ¢;(z;), D
is a diagonal matrix with entries D;; = 1 if |r;| < 4 and D;; = 0 if |r;] > 7,
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and v has entries v; = p'(r;/y). Solving this system gives an update vector
p which should provide a better estimate ¢ + p of the solution parameters
c*. In order to ensure convergence, we also incorporate a line search which
involves finding a scalar o which is the solution to the equation

(4p)To' (____’ +;‘AP) 0.

Having found «, we then obtain a new estimate of ¢* by setting ¢ := ¢ + ap.
We repeat this procedure, updating D and v as necessary, until we have
obtained c¢* to sufficient accuracy.

Weighting

‘We choose to generalise (2) by introducing weights to obtain a weighted Huber
M-estimator of the form F = Y | w;p(r;/7), where v is the Huber threshold,
w; is the weight associated with the ith datum, and r; is the residual associated
with the 7th datum. It may be necessary to introduce weights in this way in
order to deal with non-identically distributed errors in the data, in which case
the weights may be chosen to be the reciprocals of the standard deviations of
the underlying probability distributions.

Many algorithms exist to find unweighted Huber fits, and in general,
adapting them to find a weighted Huber fit is a straightforward task. As an
example, we show how to adapt a Newton-like method.

Weighted Huber algorithm.

1) Calculate v; = w;p'(ri/7).
DI %ATDwAp = —ATv is consistent, define p := -—;ly-(ATDwA)’“ATv,
Otherwise, define p := -—%P‘IATV, where P is a positive definite
matrix.
3) Find a steplength o > 0 such that (4p)7 Dy p'((r + aAp)/v) = 0.
4) Set ¢ :=c + ap.

Here, A is the m X n matrix representing the underlying linear model, Dy, is
a diagonal matrix with entries

w;, if I’I‘i/")’l S 1,

(Dw)ii = { 0 i
, i |ri/y] > 1.
P is usually the identity matrix, I and YT denotes the pseudo-inverse of a
matrix Y, defined so that Y’ is that matrix X of the same dimensions as Y7
such that Y XY =Y, XYX = X and YX and XY are symmetric.
We note here that there are many other algorithms for finding a Huber
fit, and that most, if not all, can be adapted just as easily.
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Lawson’s algorithm

This algorithm, analysed by Lawson [7] in 1961, enables an £, fit to be ob-
tained by repeated weighted ¢, fits. The algorithm itself is very straightfor-
ward, and involves updating the weights at each iteration according to

ng-l) = _____w,-G(T,(I)) Y’ (3)
S wkG(r?)

where G(t) = [t|. The denominator is a normalisation term to ensure that the
weights sum to unity. The numerator has the effect of weighting data with
large residuals more heavily, with the result that, in the limit, only those data
with a maximal residual will have any weight attached to them.

Lawson’s algorithm finds the points of extreme oscillation and weights
these accordingly to obtain the best £,, approximation. The other weights
are not important, and in fact converge to zero.

Initial values for the weights are usually chosen to be wgl) = 1/m, as
this treats all the data equally and satisfies the condition that the sum of the
weights must be unity. Proofs of convergence require that the {¢;(z)} form
a Chebyshev set, but experimental results (see, for example, [4]) suggest that
the algorithm is more generally applicable.

A summary of Lawson’s algorithm.

1) Set all weights equal (with the sum of weights equal to unity).
2) Perform a weighted least-squares fit.

4
5) Return to Step 2 until convergence is obtained.

)
3) Calculate the residuals from the weighted least-squares fit.
) Update the weights according to Lawson’s formula (3).

)

§3. The Algorithm

We are concerned with the solution of the problem

min  max _|r,
e {ralnid<y}

where r; is the residual for the datum (z;,v:), and « is the Huber threshold
value. In order to solve this problem, we reformulate it as

m
min y " wip(ri/7),
i=1

where p is defined as in equation (1), and we adopt an iterative procedure to
find ¢ by performing successive weighted Huber fits. The weights are updated
after each iteration in a manner similar to Lawson’s original algorithm. While
Lawson’s algorithm is concerned with finding a minimax fit via a sequence
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of weighted least-squares fits, this new algorithm finds a minimax fit to the
non-outlying data via a sequence of weighted Huber fits.

Unfortunately, Lawson’s rule for updating the weights cannot be used in
this new algorithm since the rule would weight the outliers too heavily. As
a result, the outliers would be fitted more accurately at the next iteration.
The essential point of Lawson’s update is to weight those datum points which
correspond to the maximal errors of the minimax fit. To maintain this general
trend, we need an update in which the function G in (3), rather than being
monotonic, instead increases to a peak and then decays, with the peak corre-
sponding to the residual with the largest magnitude which does not exceed .
The latter is termed the “y-maximal residual” and denoted by vy g.

The function we choose in place of |t| is a negative exponential of the

form " i 1] <
G(l) 1) = { ) T 1 S YMR,
( ) YMRE g (It 7MR), if |t| > YMR,

and we update the weights at each iteration according to (3). (Note that G(
changes with the iteration [.)
For |t| > ymR, the yug factor in G(')(t) is needed to ensure continuity

at [rgk)l = ymr and the —7;3/5 term in the exponential is used so that the
left and right derivatives of G;(t) are continuous at ypg. The reason for this
second condition is to ensure that points with residuals just over vy gr and
those with residuals just less than vy are treated similarly.

§4. Convergence

We have obtained favourable results with this algorithm, provided that certain
conditions are met. Firstly, the form of the approximating model needs to be
appropriate. For example, trying to approximate a set of data corresponding
to a quadratic by a straight line will probably lead to problems, as it is likely
that a considerable number of the data will be treated as outliers. Secondly,
v needs to be chosen carefully. If « is chosen to be too small, then there may
be many solutions and it may not be possible to predict to which solution the
algorithm will converge — if it converges at all.

We therefore conclude that in order to use this algorithm effectively, we
first need to have some details of the problem we are to tackle. If we are
unsure as to what sort of model to fit to the data, then < should be chosen to
be larger than we might initially require. If we are unsure what value of v to
choose, then some sort of y-reduction procedure may be effective for finding an
appropriate value. An initial value of 4 may be chosen by use of the formula
v = 1.9906 x median(]r; — median(r;)|) (see, for example, Ross et al, {12]).

The effect of using a Lawson-like update with a non-monotonic factor is to
increase the weights at the extrema of the minimax approximation and reduce
all other weights, including those of the outliers. In practice, the algorithm
produces a minimax approximation to a subset of the data with the aim that
this subset should be the non-outlying data. Unfortunately, we have been
unable thus far to prove convergence for this algorithm. However, it should
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be noted that the convergence rate would be expected to be similar to that of
Lawson’s original algorithm as they essentially do the same task.

§5. Acceleration Schemes

Although the algorithm as it stands is acceptable for small problems, it nev-
ertheless takes a considerable length of time to achieve relaxed convergence
conditions. This is no surprise as one of the shortcomings of Lawson’s al-
gorithm is its slowness to converge. More specifically, the convergence of
Lawson’s algorithm is linear with a ratio of 7* [11], where

e

—— T <1,
max |r*|

™ =max |1 =

with r* defined to be the vector of residuals from the optimal £, fit. In
many situations, this ratio can be very close to one, leading to rather slow
convergence.

One technique to increase the rate of convergence is to use the fact
that, upon convergence, the weights corresponding to non-extremal residu-
als are zero. Specifically, after a set number of normal iterations to allow
the weights to settle a little, we may set w; = 0 if |r;| < 02/||7i]|00, Where

o= [Z:’;l wl(k)(rz("c))2 1/2. This latter technique is the one presented by Rice
and Usow [10], although Ellacott [4] found that it could cause the algorithm
to fail.

Of course in the case of this new algorithm, these schemes cannot be
applied directly. We need to compensate for those data which are being treated
as outliers, thus this scheme is not valid. If it were possible to find some
analogue of ¢ for this new algorithm, then it may be possible to use that

analogue in an acceleration scheme.

§6. Numerical Results

We have tested this algorithm extensively and now present some numerical
results to illustrate it. In Figure 1, we show a synthesised data set consisting
of 95 points lying close to the polynomial f(z) = 2z% — 3z + 1 with 5 outliers.
Figure 1 also shows the best fitting quadratic polynomial to the data obtained
by a least-squares fit, by an £, fit and by the new algorithm presented in this
paper. The noise in the data is taken from a uniform distribution on [-0.1,0.1]
and we thus choose v = 0.1. Table 1 shows the results from the various fits
performed. It is clear that both the £ and ¢, fits are unsuitable and are
affected by the outliers. However, the new algorithm succeeds in identifying
the outliers and successfully ignoring them. Comparing the results from the
new algorithm with those from performing least-squares and minimax fits to
the data without outliers, we see that they are much more in agreement. In
fact, as we would expect, the new algorithm has generated an almost identical
fit to the £, fit on the accurate data.
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Various quadratic fits to data

O Data
X - - Least-squares i
51 xR -+ Minimax fit

Q —— Robust minimax fi

Fig. 1. Various quadratic polynomial fits to a set of data with outliers.

We also note that, while the new algorithm seems to be significantly
faster in this example, this is not the case in general. In fact with stricter
convergence criteria, Lawson’s original algorithm applied to the non-outlying
data converges in fewer iterations than the new algorithm. The reason that
the minimax fit to the data containing outliers takes fewer iterations is due to
the result in Section 5 involving 7*, which, because of the outliers, is actually
quite small (7* = 0.9497) compared to 7* = 0.9894 for the case of the new
algorithm.

£2 Zoo New 82 (NO) éoo (NO)

co +0.9499 +0.9839 +0.9958 +1.0059 +0.9971

c1 —2.7868 —0.4571 —2.9951 —3.0007 —3.0001

Co +2.1568 +2.0492 +2.0057 +2.0050 +2.0035
Tterations 1 46 39 1 140

Tab. 1. Numerical results: fitting a quadratic (NO : No outliers).

The convergence criterion was the same for both Lawson-like algorithms,
namely that the magnitude of the four largest y-maximal residuals should
agree with a relative error of less than 10~2. In addition, no acceleration
schemes were used since we needed to obtain a measure of how fast the algo-
rithms were in their unaccelerated form.

§7. Conclusions

We have presented an algorithm for fitting a linear form to data containing uni-
form noise, contaminated by outliers. Future work will concentrate on three
main areas. Firstly, acceleration of the convergence of the algorithm. Sec-
ondly, extension to non-linear forms. Thirdly, extension to general £, norms
rather than solely to the £o,-norm.
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