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Theoretical model of carrier flow process on boundary
of electrode-dye layer
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ABSTRACT
The aim of this paper is better understanding of the process of carrier flow generation on the boundary of electrode-dye
layer in a photoelectrochemical cell for application in solar energy conversion. Such a boundary of two semispaces is a
theoretical two-dimensional model of a photoelectrochemical cell which consists of electrodes and a layer of organic dye
molecules in which electron transport process can take place. The semispaces are described in their own microcanonical
distributions.

We will consider the process of carrier flow generation on the boundary of electrode-dye layer by means of
formalism of thermodynamical quantum statistics. We have obtained the statistical average value of the function of
electromagnetic field at the given temperature and in approximation of the low temperature.
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1. INTRODUCTION
Semiconducting-metal photoelectrochemical cell with the organic dye molecules is widely studied because of its potential
application as a device in solar energy conversion. '. A sandwich-like photoelectrochemical cell is usually constructed with
two thin transparent electrodes (semiconductor and metal) with the molecular material (natural pigments or synthetic
organic dyes in proper solution) embedded between them. In this system the photoactive dye layer deposited on a
semiconducting electrode is used to absorbed incident light. Incident light excites dye molecules and electron can be
injected to the electrode on the boundary of electrode-dye layer. The semiconducting and the dye layer serve as an electron
acceptor and electron donor, respectively 2-6. In such a cell photocurrent can be created in closed circuit under light
illumination 2-6.

Several groups have reported theoretical approach for seeking the mechanisms of the electron transfer reaction in
various models 7-12. One of the first theoretical treatments in searching for the mechanisms of oxidation - reduction
reactions in solvent medium was proposed by Marcus 9 and then theories concerning mechanisms of electron transfer were
developed by other authors 10.4 In our description we use the extended phenomenological electrodynamics theory 8. In our
model the current density vector could be represented by two, tangential and normal components which get jump on the
boundary of two semiconducing layers. It has been shown that the current density components are dependent on the ratio of
electric permittivity and conductivity of the semiconducting electrode and the dye layer. Thus the charge carrier flow can
vary efficiently with the material parameters of the interfacial system.

Our previous papers dealt with the problem of photogenerated electron transfer from photoexcited dye molecule to
the semiconducting electrode with the use of the classical thermodynamical statistics 15 and in view of hamiltoman
formalism by using quantum description 6. It has been shown that with the theoretical model of electromagnetic energy
transfer in a photoelectrochemical cell presented as two semispaces (an electrode and a dye layer) and described in terms of
the extended phenomenological electrodynamics the electromagnetic incident and refractive waves can be modelled as the
harmonic oscillators on the boundary of these two semispaces.

In this paper we will consider the process of carrier flow generation on the boundary of electrode-dye layer for
application in solar energy conversion in a photoelectrochemnical cell by means of formalism of thermodynamical quantum
statistics.
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2. RESULTS AND DISCUSSION
For our description we will consider the 2 dimentional (2D) system (in the x2 , x3 plane) consisting of the thin layer of
semiconducting electrode (semispace 1) and the layer of photoexcited dye molecules (semispace 2) as we have done in our
previous paper '. The dye layer is located very closely to the semiconducting electrode. The right-handed Cartesian co-
ordinate system is taken in such a way that the plane which separates the semiconducting semispace 1 and the dye
semispace 2 is represented by the equation x3 = 0. The positive direction of the x3 axis goes inside the semispace 1 .

One supposes, that the two semispaces are characterised by the proper material constants: s, g, cy, (for semispace 1) and
E', ý%', a' (for semispace 2). These parameters describe electric permittivity, magnetic permeability and conductivity,
respectively, in classical electrodynamics and also describine the modelling constants: A, A', C, C', I, I', J, J', K, K' and N,
N' in the extended electrodynamics description. According to the results of our paper 7 the classical theory of the refraction
of the optic wave describes the components of the field functions: bl, d2, d3, and bl', d2', d3' in two semispaces, respectively.

On the basis of the formalism of the extended electrodynamics the hamiltonian has a form:
in semispace 1:

H -ml 1 +-IJ022 + a 32) _I-A(bl, 2 ±b1,32)_-1C d2 ,3 2±d 3,2
2 )+ Cd2, 3d3,2 +-Kb 1 2+-IN(d 2

2 ±d 32),
2 2 2 2 2 2

(1)*

where: and b.ik =. i

In the semispace 2 in the equation (1) all quantities have indices "prim".
In the hamiltonian formalism the variables are the functions of bl, bl' and the magnetic induction B1, B1 ' are the

canonical momenta. The hamiltonian [eq. (1)] in the representation of these functions has the form:

H+- + '- b 2[q 2A+K+ i2(Nqt -q 2J)], (2)
21 2

A
where: q is the wave number of the incident wave and i" = -6.

2J
According to the taken formalism for the canonical hamiltonian equation for semispace 1 one obtains:

l*1 = Bi

b ,1 =b[q2A+K +,q2 (Ns..- q 2j)], (3)

For the semispace 2 the analogue equations are obtained and all quantities have indices ,,prim", as previously.
From the formal viewpoint equations (3) are the equations for the harmonic oscillators. With this solution the

phenomenon of the refraction of the electromagnetic wave and the generation of the electron transfer on the boundary of
two semispaces has been brought to the model of interaction of two continuous harmonic oscillators in the hamiltonian
formalism. Energy transfer across the boundary of two semispaces can be described as an interaction between these
oscillators.

The quantum description of this problem will be got when the operators and the Poisson comutators replace all
physical quantities and brackets, respectively. The hamiltonian equations of motion are transferred to the proper quantum
equations 17. The energetic levels are then determined as the eigenvalues of the hamiltonian. In quantum description the
hamiltonian [eq. (2)] for the semispace 1 will have the form:

f-I 1 +± F;b1
2  (4)

21 2
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where: F = q2 A + K + 12 (Nsýt - q2 J).

For semispace 2 all quantities have indices ,,prim".
The hamiltonian (4) has a form which is characteristic for quantum version of the harmonic oscillator what allows to write
the standard equation of the eigenvalues for energy:

E. = (n + 1 )hQ, n = 0, 1, 2,.... (5)

112

with: h - Planck's constant and Q = q 2

I I2)]

The eigenvalues of energy [eq. (5)] determine the admitted energetic levels in the two semispaces. Energy of photon
absorbed by dye molecules (semispace 2) is utilised for the excitation of electrons and their transfer to the conductivity band
of the semiconductor (semispace 1).

In quantum theory the Heisenberg uncertainty principle plays an essential role in relation between co-ordinates and
canonical momenta. In our previous paper 16 we have first established the allowed energetic levels of a system as the
classical levels of the harmonic oscillator taking the Heisenberg principle into account. In the theory of the oscillator the
probability of these energetic states which are described by the proper eigenfunction can be determined 18. On the basis of
that the distribution of the probability for dynamic function of the oscillator or of canonical momenta can be determined in
statistical sense. The energy states En of the oscillator are non-degenerated and the oscillator is modelled as the isolated
system at the temperature T. The probability of the state with the energy E, is given by the expression '8:

Wn = exp[~T E,], (6)

where: k is Boltzmann's constant and

T = -kT In exp(- .

The probability [eq. (6)] for the oscillator is given in a form of the gaussian distribution:

Ii hf2 1/2 Ie - hQW(bs)=•• tg h 2-) tg h 2-- -1. (7)
h7c 2kT h 2kT

The statistical average of the field function b, can be estimated from Ref. [18]:

-2 h I 1
bs =- h_ (_ (8)

[exp(- K) -1]I

hQf
If --)) (what is interpreted as low temperature approximation) eq. (8) can be obtained in a form:

2 h 1 h( !
Q = 2 + exp(-- )l(9)
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Hence, we have obtained the statistical average value of the function of electromagnetic field at the temperature T.
The value of magnetic induction (canonical momentum in the extended electrodynamics formalism 7 ) must be determined
in such a way to fulfil the Heisenberg uncertainty principle. The determination of the field function and of canonical
momentum will give full description of the system under consideration.

3. CONCLUSIONS
In the paper we have used the thermodynamic quantum statistic theory of the harmonic oscillator for description of the optic
wave of electromagnetic field in the given model of the photoelectrochemical cell with the dye. It was possible on the
ground of the results obtained in the previous papers 7,

1 5
,
1 6

.

Marcus approach 9-11 does not exactly explain the observed increasing of the electron transfer rate with decreasing
temperature in reaction centre, which can be treated as a microscopic photovoltaic device on the molecular level. In this
paper we have obtained the statistical average of the value of the field function of the optic wave at the given temperature
and in the approximation of the low temperature. In the light of Marcus theory and mentioned discrepancy between the
experimental and theoretical electron transfer rate values our results seem to be important since they show the possibility of
modelling of electron transfer process on the boundary of semiconducting and dye layer in the photoelectrochemical cell at
room and low temperatures. The presented thermodynamic description can be used in the study of interaction between the
electron donor-acceptor pair and it will be the subject of the forthcoming paper.
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