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Transient surface supersaturation after crystal submersion ( II)

Miroslawa Rak*

Institute of Physics, Technical University of L6di, ul. W61czafiska 219, 93-005 L6di, Poland

ABSTRACT
In our earlier papers [M. Rak, Proc. SPIE 3178 (1997) 108 and M. Rak et al., J. Cryst. Growth 197 (1999) 944 ], we solved
the time-dependent equation of Burton, Cabrera and Frank (BCF) for transient state conditions occurring immediately after
submersion of a crystal surface in supersaturated solution. As a result, the expression for the transient surface
supersaturation was found and discussed. In this paper we present an approximation of that expression. The approximation
enables a simple estimation of the time required to attain the steady-state value of the surface supersaturation.

Keywords: time-dependent BCF equation, surface supersaturation, surface diffusion theory of crystal growth, solution
growth.

1. INTRODUCTION
In our previous papers 1, 2 we studied, using the surface diffusion theory 3'4 of Burton, Cabrera and Frank (BCF), the
transient surface supersaturation as occurring immediately after submersion of crystal face in supersaturated solution. For
this purpose, we solved L2 the BCF time-dependent equation:

_2 n !. (, n r On
W~x +,2 +o) ;F R• 1

where n =- n(xt) is the local concentration of growth units at the surface; n. is the equilibrium concentration of growth units
at the surface; a is the relative supersaturation just above the surface and very far from a step, so it is the same as the bulk
supersaturation; X is the mean diffusion distance of the growth unit adsorbed on the surface and r denotes the relaxation
time for leaving the surface adsorption layer. The relaxation time r is related to the activation free energy AG for desorption
by Eyrings' formalism 3:

h (AG '

where h is Planck's constant, kB is the Boltzmann constant and T denotes temperature.

To formulate the initial condition, we assumed 1' 2 that, as soon as the crystal face is submerged in the supersaturated
solution, the surface supersaturation as is equal to the bulk supersaturation a:

as(x, 0)= a , (3)

where the surface supersaturation as a- s (x, t) is defined as:
as -~n (4)ne

Eq. (1) was solved 1,2 for a parallel sequence of equidistant steps and the origin of the coordinate system chosen in the
centre of the step terrace. The positions x = xo/2 (where xo denotes the interstep distance) corresponding to the step edges
were assumed 2 to remain unchanged during the transient state. Furthermore, the boundary conditions assumed ' 2
symmetrical diffusion fields around steps and equilibrium concentration n of growth units at the step edges. Taking into
account Eq. (4), the solution for Eq. (1) with initial condition (3) was found" 2in the following form:
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a(xt)=a I- cosh(x/2X) + (5)
f cosh(x, /2%)

4(2k-1)cos[7r(2k-1)x/x,] e( r2(/xo)2(2k-1) 2 +1

k=kL ,i'

The analysis of the transient surface supersaturation, expressed by Eq. (5), revealed ' 2 that the time ts required to attain the
steady-state value of as does not depends on the bulk supersaturation a, but it increases with increasing relative interstep
distance xo/W. Furthermore, the longest period of time ts0 is necessary to reach the steady-state value of 0 s at the centre of
the step terrace (x = 0) and therefore this point is of particular interest

The aim of this paper is to present an approximation of Eq. (5) which enables a simple estimation of the time ts required to
attain the steady-state value of surface supersaturation after submersion of crystal face in the supersaturated solution.

2. APPROXIMATION OF EQ. (5)
In order to find an approximation of Eq. (5) we follow in the way similar to that presented in one of our earlier papers 5.
Therefore, we use the effective time tff defined 5 as:

= T I cosh(x X) 1 (6)
t 1 cosh(xo/2X)j .

In the summation term of Eq. (5), we now replace the power [n2()jxo)2(2k-1)2+l]t/T by tefr, which leads to an
approximation:

47 0 (2k-1)cos[7r(2k-1)x/x°] [ 7r2 (2L/x°) 2 (2k-1l)2 t
7C 2 (2k-1)2 +(X0 /X) 2  t

exp (2k- )cos [(2k -1)x/xo
teff)4 c 2

Taking into account that the solution given by Eq. (5) fulfils the initial condition [Eq. (3)], we find:

W k (2k - l)cos[7(2k - l)x / x0 J cosh(x / ))-47CEZ(-1) -, 8
k=1 r2 (2k - 1) 2 + (xo / X) 2  = cosh(x 0 /2X) (8 )

This result is also obtainable using the Fourier expansion corresponding to the function cosh(x/X)/cosh(xo/2X) in the interval
(-xd2, xo/2). Upon substituting Eq. (8) into Eq. (7), we have an approximation of Eq. (5) in the following form:

S ep f (9)

where tf is expressed by Eq. (6). The approximation given by Eq. (9) and the solution found previously [ Eq. (5) 1 take the
same initial and steady-state values. In addition to this, Eq. (9) fulfils the boundary conditions assumed for solving the BCF
time-dependent equation.

3. DISCUSSION
In order to illustrate the solution given by Eq.(5) and its approximation [Eq. (9)], we perform calculations for bulk
supersaturatious sufficiently low to predict the BCF spiral growth mechanism The relative interstep distance xo/k present in
Eqs. (5) and (6) can be found using one of the known approximations of the interstep distance (see e.g. Ref6 ). However,
since this distance depends not only on supersaturation but also on the edge free energy and the number of cooperating
spirals, we assume several values of xo/). (xo/k = 2, 3, 4, 5) to show the influence of xo/d on behaviour of the surface
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supersaturation. In Fig. 1 the surface supersaturation aso at the centre of step terrace (x = 0) is shown as a function of the
relative time t/r.
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Fig. 1. Surface supersaturation aso at the centre of the step terrace (x = 0) versus
relative time t/r for bulk supersaturation a = 0.01. Curves 1, 2, 3 and 4
correspond to the relative interstep distance xo/X = 2, 3, 4 and 5, respectively.
Full and dashed lines correspond to Eq. (5) and (9), respectively.

The full and dashed lines correspond to aso calculated from Eq. (5) and aAo calculated from Eq. (9), respectively. It can be

seen in Fig. 1 that, at small values of t/r, the function aso(t) differs from the exponential function a so (t). The difference is

more considerable for greater values of the relative distance xo/r. The slope (Oas/at)t = o of the curve as(t) at t = 0 is equal to
zero, which means that at t = 0, the surface supersaturation as remains constant (cf. full lines in Fig. 1). This result is
obvious from physical point of view. At t = 0, the behaviour of the surface supersaturation is determined by the exchange of
growth units between the crystal surface and the solution bulk. The net flux jv of growth units exchanged with the bulk of
the solution is equal 1, 4 to:

-v = nj(c-as) (10)

However, just after submersion of the crystal face in supersaturated solution, the surface supersaturation as is equal to bulk
supersaturation a [cf. Eq. (3)]. In consequence, at t = 0, the net flux jv is equal to zero and as remains constant at t = 0. At
t > 0, the surface supersaturation is reduced by the surface flux of growth units going to the step edges.

In Fig. 2 the surface supersaturations as and c;A are shown, for xo/dX = 3 and various values of t-r, as a function of the

relative distance x/xO from the step centre. It can be noticed that with increasing distance x/xo from the step centre, the
difference between as and aA diminishes and for x = (0.2 + 0.3)xo reaches zero. Then it changes its sign and with

increasing x, the absolute value of the difference increases. Consequently, for x = (0.2 + 0.3)xo, values of as and a' are

very close to each other.

Although the behaviour of the functions as(t) and as (t) is different at the beginning of the transient state, these both
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Fig. 2. Surface supersaturation as versus relative distance x/xo from the terrace centre,
plotted for x0/k = 3, 0 = 0.01 and various values of the relative time t/t. Curves
1, 2, 3 and 4 correspond to t/k = 0.1, 0.5, 1 and 3, respectively. Full and dashed
lines correspond to Eq. (5) and (9), respectively.

functions attain their steady-state value at the same time (cf. Fig. 1). Therefore, the time ts required to attain the steady-state
value of the surface supersaturation can be estimated with the use of Eq. (9). In transient state analysis, it is usually assumed
that the steady-state is attained when the transient part of the equation is not greater than 0.01 of its initial value.
Consequently, the exponential term in Eq. (9) can be neglected when it is not greater than 0.01 of its value at t = 0. This
means that the time ts necessary to attain the steady-state value of the surface supersaturation can be estimated as:

ts -, 4 .6 tff , (11)

where tff is given by Eq. (6). Values of the characteristic time tso (for x = 0) and the time ts for x = 0.25xo, obtained using
Eq. (11), are presented in Table 1.

Table 1. Values of the relative time ts/k obtained using Eq. (11) and those following from Eq. (5), for various
values of xo/X. Results for x/xo = 0 and x/xo = 0.25.

tadx ts/x J td 02 o) tadvl ts/I
x/xo= 0 Xo/)' Eq.(6) Eq.(11) t-/T x/xo= 0.25 Xo/2  Eq.(6) Eq.(ll) ts/t

2 0.35 1.62 1.43 2 0.27 1.24 1.29

3 0.57 2.64 2.41 3 0.45 2.07 2.12

4 0.73 3.38 3.22 4 0.59 2.71 2.74

5 0.84 3.85 3.87 5 -0.69 3.18 3.17

6 0.90 4.14 4.41 6 0.77 3.53 3.47

7 0.94 4.32 4.89 7 0.82 3.78 3.70

8 0.96 4.43 5.32 8 0.86 3.97 3.88
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In this table, we also show values of the characteristic time tso and the time ts calculated from Eq. (5). To calculate the times
tso and ts from Eq. (5) we also assumed that the transient part (summation term) in Eq. (5) can be neglected when it is not
greater than 0.01 of its initial value. It follows from the results presented in Table 1 that, in the centre of step terrace (x = 0),
the simple expression (11) may be used for estimation of the characteristic time tso only at not too large values of the
interstep distance (xofX < 7). At large x0o/, values of tso estimated using Eq. (11) are too low in comparison with those
following from Eq. (5). It can also be noted that at the point x=0.25xo, where the difference between as and a• is negligible

(cf. Fig. 2), the difference between values of ts estimated using Eq. (11) and those following from Eq.(5) is also negligible.

4. CONCLUSIONS
The present study shows that for not too large interstep distances xo/X, the time ts necessary to attain the steady-state value
of the surface supersaturation as is approximately equal to 4.6 t4 where tf is expressed by Eq. (6). This simple estimation
demonstrates that the time ts does not depends on value of bulk supersaturation but it increases with increasing interstep
distance xo/X and with increasing distance from the step edge. It should also be pointed out that the time ts is directly
proportional to the relaxation time -r for leaving the surface adsorption layer. This means that the time ts, required to
attain the steady-state value of as, is related to the activation free energy AG for desorption, and temperature of the
solution [cf. Eq. (2)].

5. LIST OF SYMBOLS
AG Activation free energy for desorption.
jv Net flux of growth units exchanged with the solution bulk.
h Planck's constant.
kB Boltzmann constant
n [a n(xt)] Local concentration of growth units at the surface.
n. Equilibrium concentration of growth units at the surface.
T Temperature.
t Time.
tff Effective time defined by Eq. (6).
ts Time required to attain the steady-state value of as.
tso Characteristic time, required to attain the steady-state value of the surface supersaturation aso.
x Distance from the step centre.
Xo Interstep distance.
X Mean diffusion distance of the growth unit adsorbed on the surface.
C Relative supersaturation just above the surface and very far from a step, so it is the same as the bulk

supersaturation.
as [- as(xt)] Surface supersaturation expressed by Eq. (5)

C;a• (x, t) ] Surface supersaturation as approximated by Eq. (9).

aso Surface supersaturation as at the centre of the step terrace (x=0).
ASso Surface supersaturation aso approximated by Eq. (9).

Relaxation time for leaving the surface adsorption layer.
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