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Exit Pupil Patterns from Optical Disks

Robert S. Upton and Tom D. Milster
Optical Sciences Center, University of Arizona, Tucson, AZ, USA, 85721

ABSTRACT

The modulation of the irradiance in the exit pupil of an optical data storage scanning system is described by
analyzing the behavior of scan-dependent interference fringes. These fringes are grouped into three independent
irradiance components. The variation of the exit pupil irradiance pattern as a function of groove depth is discussed.

Keywords: Diffraction, Interference, Pupil Irradiance Modulation, Scanning Optical Microscope

1. INTRODUCTION

Optical data storage scanning systems are a sub-class of optical microscopes that use a coherent laser source. The
laser light is focused onto semi-periodic marks recorded on the data layer of a rotating optical disk. The semi-periodic
property of the marks the marks to be well represented by a Fourier series. The laser light field scattered from the
optical disk is collected by a high numerical aperture (high-NA) collection lens. The electronic readout signal is
generated by a detector placed in the exit pupil. In this paper, the effects of the phase depth of the pre-grooves on
the disk on the exit pupil irradiance modulation are discussed. The exit pupil irradiance modulation with varying
groove depth is simulated using Optiscan,’ which is a Matlab® based diffraction code.

Section 2.1 presents a high-NA scalar diffraction model that is used to describe the propgation of the light fields
from the optical disk to the exit pupil.® Section 2.2 also presents a technique that describes the reflected light field
from the optical disk as a linear summation of component disk fields by Babinet’s principle. Section 3 presents the
simulation parameters and optical disk model! used in the computer simulations. Section 4 presents the simulated
exit pupil irradiance modulations.

2. DIFFRACTION MODEL

In this section a high-NA scalar diffraction theory is outlined and the linear decomposition of the light field reflected
from the optical disk is discussed.

2.1. High NA Scalar Diffraction Theory

Figure 1 shows a simplified layout of the optical data storage scanning system. Light from the laser source is
collimated and then focused onto the optical disk where it interacts with the data marks. The data marks scatter
the incident laser light, which is collected by the collection lens. The scanning system can be represented by the
illumination pupil, disk and collection pupil, as shown in Fig. 1(b).

The light field in the illumination pupil is denoted by OILL(a,B). a and B are direction cosines, which are
also the coordinates of the pupils. The focused light field on the optical disk is denoted by Oprsk(£,9). % and
§ are wavelength-normalized spatial variables. The relationship between the direction cosines and the wavelength-
normalized variables is described by a propagating plane wave,

U(&,9) = A(%,9) exp[2mi(Ea + §B)]- m
a and B are also Fourier transform conjugate®® variables with £ and §, respectively.

The relationship between O;r1, (o, B) and Oprsk (%,9) is,

~ ~0 fos) © ~ " ~
Oprsk(&,§) = exp [-mi (12 :y )] / / Orrs (e, 3)13‘?-(#,’&1) exp [2mi(az + B§)|dadB, @)
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Figure 1. A schematic showing the geometry of an optical data storage scanning system. (a) The optical data
storage scanning system is shown unfolded. (b) The scanning system can be represented as an illumination pupil,
optical disk and collection pupil. The fields in the pupils reside on a surface called the reference sphere. The radius
of the reference sphere in the illumination pupil equal to the radius of the focusing light field and the radius of the
reference sphere in the collection pupil equal to the radius of the diffracted light field.

where 7 is the wavelength-normalized radius of the illumination pupil illustrated in Fig 1(b).
Opisk (%, ) is modified upon reflection by the data marks, which are represented by the mark reflectivity function
Cr(%,%). The field reflected from the disk is,
Uprsk = Cr(2,§)Op1sk(%,9)- @)

The form of the reflected field in the collection pupil, Ocor (e, B) is,
. 0 oo ..l i2nF 22+ a i e
Ocorr(a,f) = / / Upisk (&, §) [_@_@P exp [ (—r}’—)]] exp [-2mi(ad + fj)ldadf.  (4)
oo o

Substitution of Eq. (4) into Eq. (2) and use of the convolution theorem for Fourier transforms’ results in a simple
analytical expression for Ocorr{a, ), which is,

Goor(a,B) = / / Oru(e’,8)Cr(a ~ o, B — B')daldB'. 5)

oo JO

Crla, B) is the Fourier transform of the mark reflectivity function. Therefore, the field in the collection pupil is
the two-dimensional convolution between the Fourier transform of the disk reflectivity function and the field in the

illumination pupil.
The irradiance in the collection pupil, Ecory(a, 8) is

Ecori(a,B) = Ocorr(a',8")* OcorL(a, B). (6)




2.2. Linear Decomposition of the Optical Disk Light Field

This section is a mathematical description of the exit pupil irradiance modulation using the scalar diffraction model
developed in section 2.1.
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Figure 2. A schematic showing the disk model used in the formation of the exit pupil irradiance. (a) The mark
geometry and shape simulated. §; and 7; are the length and width of the data mark on the i’th data track. (b) The
disk geometry and disk component fields for on-track, Uon, off-track, Uorr, and background, Ugg, are shown. (c)
The fields in the pupil combine and form the pupil irradiance. The total pupil irradiance is decomposed into three
signal groups. The first group is BASE, which is the combination of Uoy and Upg. The second signal group is
SMX, which is the combination of Ugrr and Ugg. The third group is IMX, which the interference between Upn
and Uo FF-

In this section the total field reflected from the disk, Uprsk (£, 7), is re-expressed as a linear combination of disk
component fields by use of Babinet’s principle.%® The disk component fields are also known as the Babinet fields.
Figure 2 is a schematic of the disk model used in the description of the diffraction from the optical disk to the
collection pupil. The total field reflected from the optical disk is rewritten as,

Uprsk(2,§) = [roupc(2,§) + (rm —ri)uon (%, §) + exp(ide)(rm — ro)uorr(%,§)] Opisk (2, §)- (7

|re] is the scalar reflectivity of the disk without data marks, |rp| is the scalar reflectivity of the data marks and ¢¢g
is the phase depth of the pre-grooves on the disk. ¢¢ is related to the physical groove depth d by,

4And
where X is the vacuum wavelength of the light source. The off-track data marks are located in a groove, therefore
the phase of uorr(%,7) is modified by ¢¢-.

One of the properties of optical data storage scanning systems are semi-periodic data marks. The semi-periodic
property of the data marks allows the Babinet fields, uon(%,%), uorr(%,§) and upg(2,§), to be expressed as
a Fourier series.>®7 Therefore, using the parameters defined in Fig. 2(a) and (b), uon(%,%), uorr(Z,§) and
upG(2,7) are

M ~ ~
won(®§) = H@) S Rmexp|-2rim (””"Tj ”)1*6@), )

m=—M
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M ~f a
ooy N i [ Z0 "L oY
worr(@,0) = £0) 3 Smewl-2rim (B22)1x6- o), (10
= 7
£9) = 3 Anexplzein ()]
we@d) = 3 Aveolzrin ()] (1

In our analysis, the data marks are separable functions of x and y, which allows the pupil fields associated with the
marks to be represented as separable functions of & and 8. The delta functions 8(§) and 6(§ — fo) in Eqs. 9 and 10
locate the y center of the data tracks. Therefore uon and uorr have their y centers located at y = 0 and y = yo,
respectively. The functions f1(§) and f,(§) describe the variation of uon (%, #) and UOFF(Z %) along the y direction.
The * describes a one dimensional convolution operation. R, S,, and A, are the Fourier weighting coefficients.
The coeflicients are dependent upon the mark shape and size.

The corresponding Babinet fields in the collection pupil are calculated by taking the Fourier transforms of Eqs.
9, 10 and 11, and then applying Eq 5. The result is,

Oon(e,B) = m_EMR mexpl=2rim (21153 (8) « Orvs(a~ 7.6 (12)
M ~ .
Oorr(e,B) = Y. Smexpl-2mim (”‘)T ””)]{Fz(mexp(—zmmfo)*om(a-T—,ﬂ)], (13)
m=—M 2 Tl
Opc(@,8) = Orrr(e,B)+ [exp(ive) — 1] Z AnOrpr(e, 8- -) (14)
n=—N

Oorr {a, B) in Eq. 13 contains a linear phase in the beta direction of the pupil due to the off-set of uorr(%,§) from
the on-track. The functions F;(8) and F3(8) are Fourier transforms of the functions f1(j) and f2(§), respectively.
The one-dimensional convolution functions in Eqs. 12 and 13 can be represented as a single function, &y,

[Fl(ﬁ)*ém(a——’?-,ﬂ)] = £m(3,0) (15)

Km (187 :170) (16)

il

[F2(B) exp(—2miByo) * Orpr(a - 7 ,ﬂ)]

tm(B,%0) i8 a complex number and «,,(8,0) corresponds to the case ffp = 0. Figure 3 shows the amplitude and
phase variation of &, along the § direction of the pupil for the on-track case and the off-track case. In Fig. 3(a)
the amplitude of the off-track field in the pupil is smaller than the on-track amplitude as a consequence of the linear
phase component of &,,(8,70) in Eq. 16. In Fig. 3(b) the linear phase in Eq. 16 results in a linearly varying phase
along the 3 direction for the off-track scanning case. From Eqs. 12, 13 and 14 the Babinet fields in the pupil are
distributed into a summation of diffraction orders. The diffraction orders in Egs. 12 and 13 are distributed in the
o direction, which is in the scan-direction of the pupil. This distribution occurs because uon(a, 8) and uprr{a, §)
are arranged in the scan direction of the disk. This distribution is illustrated in Fig. 4.

The total field in the collection pupil, OcoLL is written as,
Ocorr =r.08G + (rm — 1) expligc)Oon + (ra — r1)00FF - (1)

The irradiance in the pupil is calculated by means of Eq. 6. The irradiance in the pupil is described by a summation
of interference fringes, some of which modulate the irradiance pattern as the marks are scanned. The modulating
fringes in the pupil are grouped into the three signal groups, Epasg(a, 8;%0), Esmx (o, B;%0) and Ejpx (a, B; £0),
as described in Fig. 2. The explicit form of the BASE signal group is,

Epasg(a,B;%) = 2Ar? Z 2 |s(B;0)|? [cos (27rm~T—1) + sin (27rm§:)] (18)

1

+ 2rLAr Y Rpkm(B;0)011 (0, B) cos (27f m%o)

1

+ ZTLATZZRmAnK«m(ﬂ; 0) [cos (27rm£2 + ¢G) - co8 (27rmz,-—0)] 611,1,(0(,;3 - —?-)
m n 7 7 Yo

146




— On-track
«one Ofi-track

(&) (b)

“e
T

{x_| (Arbitrary)
m

Arg(x_) (Radians)
(=]

to
o
B

-0.5 0 05 -1 05 ] 0.5
B (D" Cosine) B (D" Cosine)

Figure 3. The variation of the (a) amplitude and (b) phase of the one-dimensional convolution along 8 for on-track

and off-track scanning that is represented by |&n| and Arg(k.,), respectively.
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Figure 4. For periodic marks arranged along the x direction of the disk the diffraction orders are arranged along
a in the pupil. The modulation of the irradiance in the pupil occurs in the overlap regions between the different
scan-track higher diffraction orders (Opon and Oprr), and the diffraction orders of Opg(a, §).

Epase(a, ;%) consists of three distinct sets of interference fringes. The first set is the interference of the higher
m on-track diffraction orders. The phase of the modulation of this fringe has cos and sin components, which are in

quadrature with respect to each other.

The explicit form of the SMX signal group is,

Esmx(a, B; o)

ey}
+ 2rLArZ Smkm(8;90)0rLL(a, B) cos (27rm;1—° + Arg(Km) — ¢G>
™m 2

~1
+ 2rLAT Y Y SpAnki(B; o) cos (27rm% + Arg(nm)) Orpp(e,B - %)
m n 2

~t -~
287% Y Sh k(B Go)? [cos (Zwm% + Arg(nm)) +sin (27rm;—: + Ary('ﬁm))] (19)
m
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- 27‘LA7‘Z Z SmAnkm(B;Go) cos (27rm;f—:21 + Arg(km) — ¢G) élLL(a,ﬁ - ;—0).
m n

Like Epase(e, B8,%0), Esmx (o, B,%0) has three distinct sets of interference fringes. The first set is a result of the
interference between the off-track pupil fields. From Fig.3(b) Arg(s,,) is a linearly varying phase function with
respect to §. Arg(k) <0 for —-NA < 8 < 0and Arg(x) > 0 for 0 < 8 < NA. The effect of Arg(x,,) combined with
the scan phase, 2rmio /T2, is described with the aid of Fig. 5. The phases in the four quadrants are,

~

s = Arg(km) — 27rm-:%, (20)
o = —Arg(km)-— Zwm%, (21)
dc = —Arg(em)+ 27rm%, (22)
¢op = Arg(km)+ 27rm%. (23)

Taking the cos and sin values of the phases describes the modulation between the four quadrants that is rotational.
The modulation of the remaining sets of fringes is also rotational due to a similar phase variation between the four
quadrants. The presence of ¢¢ in the phases of these fringes results in a shift of these fringes along the 8 direction
of the pupil. The shift of these fringes affects the overall rotation modulation of Egpsrx (a, 8, £o) in the pupil. This is
further described in sections 4.2 and 4.3. The rotational characteristic of the exit pupil irradiance as off-track marks
are scanned is the basis of segmented pupil detection schemes for tracking'® and crosstalk cancellation!!»1? in optical
data storage. The rotation of the exit pupil irradiance for off-track scanning can be quantified by quadrant pupil
detection,!®!! in which the detector in the exit pupil is divided into quadrants, as in Fig. 5. Taking the sums of
the integrated irradiance along the two diagonals and then taking their difference results in the QPD signal igpp(t).
Mathematically this is

iQpp =tAa+ic —iB —iD. (24)

/

k %
Figure 5. The modulation of Egax(a, 8, %) in the pupil can be described by considering the phase of the cos and
sin modulation in four quadrants of the pupil. The phases of the modulations in the four quadrants is denoted by

¢4, OB, c and ¢p, respectively. The rotational modulation of Egpx (e, 8, £0) is quantified by the quadrant pupil
detection signal, which is igpp = ig +ic —ig — ip.

The form of the Erpx{a, B, %0) is,

Biax (0 16) = 287" 3 S8 O (8 0] 9 [27rm (% _ %) — Arg(sm) - ¢a]. (25)




Ermx(a, B, %0) consists of a single set of fringes. As with Egprx (e, 3,%0) in Eq. 19 the IMX interference fringe has
rotational characteristics due to the linear property of Arg(x,,) in the phase of the fringe modulation. The presence
of ¢ in the interference fringe causes the IMX fringe to be shifted in the pupil for different groove depths.

3. DISK MODEL AND SIMULATION PARAMETERS

Table 1 lists the simulation parameters for the quantities described in Fig. 2. The simulation parameters also include
the the disk reflectivities and the variation of groove depth. These parameters are programed in Optiscan and the
signal groups are calculated according to the linear decomposition model developed in section 2.2.

Table 1. The simulation parameters for the disk model. The quantities listed refer to the parameters given in Fig
2.

A 0.65um

NA 0.6

Yo 0.5pm

Groove Depths | 0, A/40, A/20 3)/40, A/10, A/8, 61/40, 7TA/40, \/5, 9A/40, A/4
n 0.4pum

& 1.08um

& 1.08um

™™ 0.006

TL 0.2

4. THE IRRADIANCE MODULATION IN THE COLLECTION PUPIL

This section presents simulated exit pupil irradiance modulation results. The results are separated into three sections
containing the BASE, SMX and IMX pupil irradiances, respectively. The pupil irradiances for each signal group are
shown for the four scan locations, I, II, III, IV, which are shown in Fig. 6.

Figure 6. The scan locations, I, I1, II, IV on the disk corresponding to the pupil irradiances shown in sections 4.1,
4.2 and 4.3.

4.1. The On-track Data Irradiance Modulation (BASE)

Figure 7 shows the the on-track scanning pupil irradiances for for the scan positions and groove depths indicated.
The diffraction orders introduced by the grooved background are clearly seen lying along the 8 direction of the pupil
for groove depths greater than zero.

The modulation of the fringes is along the « direction of the pupil. The data marks being scanned lie along the
z direction of the disk, introducing the higher on-track diffraction orders in the o direction of the pupil, which is
illustrated in Fig. 4. The modulation along o occurs from the overlap of the higher on-track diffraction orders with
the on-track zero’th order and background fields. The symmetry of the fringe modulation along « is determined by
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the groove depth. This can be seen from the variation of the pupil irradiance patterns for changing groove depths
for scan position I. The effect of groove depth on the pupil irradiances leads to the conclusion that the modulating
fringe that contains the phase of the groove in the cosine dominates the BASE signal group modulation for groove
depths greater than zero. The fringe in question is described by the third term in Eq. 18, which is,

2rp Ar Z Z Ry Ankm(B;0) [cos (27rm:l:i.—q2 + ¢G) — co8 (27rm%9>] 611,1,(0!, B~ 5—). (26)
n 1 1 (¢]

m

d=N10

Figure 7. The pupil irradiance modulation for the BASE signal group. The pupil patterns are arranged for the
groove depths indicated in rows and in columns for the scan positions I, II, ITI and IV. The bright portions of the
pupil are positive contributions to the pupil irradiance and the dark portions are zero.

The form of Eq. 26 can be used to predict the symmetry of the fringe movement along the a direction of the
pupil. Fig. 8 is a cosine function describing the BASE irradiance modulation between the a > 0 and a < 0 portions
of the pupil. For ¢¢ = 0, which corresponds to position A on the cosine function in Fig. 8, the modulation of the
fringe in the pupil, described by Eq. 26, is the same for & > 0 and o < 0. For A\/8 groove depth, which corresponds
to position B on the cosine function, the modulation of the fringe in the pupil for a > 0 has opposite phase to the
modulation of the fringe in the o < 0 portion of the pupil. Therefore, according to Eq. 26 the difference of the
integrated irradiance between the o > 0 portion and the a < 0 portion is a maximum for groove depth of A/8. This
is confirmed by the results of the computer simulation, as shown in Fig. 9.

4.2. The Off-track Data Irradiance Modulation (SMX)

Figure 10 shows the off-track scanning pupil irradiances for the groove depths and scan locations indicated. The
scan locations, I, II, III and IV are shown in Fig. 6. The bright portions of the pupil are positive contributions to
the irradiance and the dark portions are zero. The modulation of the irradiance in the pupil is highly dependent
upon groove depth. This is seen from the plots in Fig. 11(a) and (b).

All the modulating fringes in Eq. 19 rotate as the off-track data marks on the disk are scanned. For the groove
depth of zero the modulation of the irradiance is determined by one set of fringes, which is highly rotational, as can
be seen by the large QPD amplitude in Fig. 11(a). By introducing a grooved substrate, more interference fringes
are introduced into the pupil. This effect is seen from Eq. 19. Each of the fringes has a rotational modulation in the
pupil, but the groove dependent fringes are shifted in the pupil by an amount that is determined by the value of ¢¢.
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Figure 8. The modulation of the BASE signal group fringe can be described by considering the fringe modulation
off-set values, which are dependent upon the groove depth. Positions A and B on the cosine function correspond to
groove depths 0 and \/8, respectively. The arrows correspond to modulation of the fringe for the @« > 0 and a < 0
portions of the pupil.
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Figure 9. The amplitude of the integrated irradiance modulation for the BASE signal group between the a > 0
and o < 0 portions of the pupil.

This shift has the effect of reducing the overall rotation of the total irradiance, and increasing the modulation along
the 8 direction of the pupil. The amplitude of the modulation of the fringes along the § direction of the pupil for
different groove depths can be seen in Fig. 11(b). For the range of groove depths A/10 < d < A/6 the modulation
of fringes is almost exclusively along the 8 direction of the pupil, with very little rotation.

4.3. The Irradiance Modulation of the Interference between On-track and Off-track (IMX)

Figure 12 shows pupil irradiances for the interference between the on-track and off-track fields. The bright regions
are positive contributions to the irradiance and the dark regions of are negative contributions to the irradiance. This
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d=A/10

Figure 10. The pupil irradiance modulation for the SMX signal group. The pupil patterns are arranged for the
groove depths indicated in rows and in columns for the scan positions I, II, IIT and IV. The bright portions of the
pupil are positive contributions to the irradiance and the dark portions of the pupil are zero.
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Figure 11. For the SMX signal group. (a) The amplitude of the QPD signal as a function of groove depth. (b)
The amplitude of the integrated irradiance between the 8 > 0 and § < 0 portions of the pupil.

is a result of the IMX signal group being a cross modulation between the on-track and off-track fields. Eq. 25 shows
that the IMX pupil irradiance consists of a single set of fringes. The modulation of the IMX fringe in the pupil is
highly rotational. IMX is more rotational for all groove depths compared with SMX because IMX consists of a single

interference fringe.

The IMX fringe shifts along the 8 direction of the pupil for differing groove depths. The rotation of the fringe is
unaffected by the groove depth. However, the shifting IMX fringe affects the integrated readout signal. This is due




d=110

Figure 12. The pupil irradiance modulation for the IMX signal group. The pupil patterns are arranged for the
groove depths indicated in rows and in columns for the scan positions I, IL, III and IV. The bright portions of the
pupil are positive contributions to IMX irradiance and the dark portions of the pupil are negative contributions.

to the distribution of the IMX fringe in the pupil. For groove depth \/8 there are equal amounts of positive and
negative irradiance contributions in the pupil, which gives an integrated signal of zero. The same occurs for forming
the QPD signal, as shown in Fig. 13.

5. CONCLUSIONS

The total field reflected from the optical disk is described as a linear summation of fields reflected from the on-track
data marks, off-track data marks and the background, respectively. The fields are propagated to the exit pupil of
the optical data storage scanning system where they combine and interfere to form the total exit pupil irradiance
pattern. The total exit pupil irradiance is grouped into three meaningful terms, BASE, SMX and IMX. The BASE
irradiance results from the combination of the on-track field with the background field. The SMX irradiance results
from the combination of the off-track fields with the background fields. The IMX irradiance occurs as a result of the
interference between the on-track fields and the off-track fields. The modulating components of BASE, SMX and
IMX are termed the BASE, SMX and IMX signal groups.

The modulation of the pupil irradiances for the signal groups is described by the modulation of interference
fringes. The BASE and SMX signal groups consist of three groups of interference fringes. The IMX signal group
consists of a single group of interference fringes. The BASE signal group modulates along the o direction of the
pupil, which is also the scan-track direction. The symmetry of the movement along « is affected by the interference
fringes whose modulation is explicitly dependent upon the groove depth.

The modulation of the SMX and IMX signal groups is largely rotational. The rotation of the irradiance is a
consequence of the linear dependence in phase along the § direction of the pupil of the fields diffracted from the
off-track marks combined with the phase of the higher diffraction orders along the a direction of the pupil changing
linearly with scan location. However, for the SMX signal group, the groove depth explicit fringes are shifted in the 8
direction of the pupil for increasing groove depth. This has the effect of masking the overall rotational modulation of
the SMX signal group and increasing the net modulation along the 8 direction of the pupil. The point of minimum
rotation in the pupil is for groove depth of A\/6 and the point of maximum modulation along the 8 direction of the
pupil is for groove depth of A/8. The modulation of the IMX signal group is rotational due to the single group of
interference fringes. The IMX fringes shift in the pupil for changing groove depth, which determines the amplitude
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Figure 13. For the IMX signal group. The amplitude of the QPD signal as a function of groove depth. The variation
of the QPD signal amplitude with groove depth is due to the positive and negative contributions of irradiance in the
pupil.

of the integrated IMX signal. The rotational modulation in the pupil is unaffected by the variation of groove depth
because IMX consists of a single set of interference fringes.
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