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Abstract

Granular CoPt/C and FePt/C films, consisting of nanoparticles of the highly anisotropic
fct CoPt (FePt) phase embedded in a carbon matrix, were made by co-sputtering from
pure CosoPtsy (FesoPtsp) and C targets using a tandem deposition mode. The as-made
films showed a disordered face centered cubic (fcc) structure, which was magnetically
soft and had low coercivity. Magnetic hardening occurred after heat treatment at
elevated temperatures, which led to increase in coercivity with values up to 15 kOe. The
hardening originated from the transformation of the fcc phase to a highly anisotropic
face centered tetragonal phase (fct) with anisotropy K > 107 erg/cm®. Transmission
electron microscopy studies showed FePt particles embedded in C matrix with a particle
size increasing from below 5 nm in the as-made state to 15 nm in the fully annealed
state. These results are very promising and make these materials potential candidates for
high-density magnetic recording.

1. Introduction

FePt and CoPt alloys with compositions close to equiatomic have been studied
extensively in the past, as possible candidates for permanent magnets [1], because of the
large value of magnetocrystalline anisotropy of the ordered fct phase. This resulted in
coercivities greater than 5 kOe. These alloys undergo a phase transformation at 1300°C
for FePt and 800°C for CoPt, from a disordered face centered cubic (fcc) phase at higher
temperatures to an ordered face centered tetragonal (fct) phase at lower temperatures.
Recently these alloys were prepared in the form of thin films receiving considerable
attention for magnetic recording and magneto-optical recording applications [2].
Requirements for higher magnetic recording density with low noise impose the
need of a material consisting of magnetically isolated grains with size below 10 nm >, In
such small grain sizes high magnetocrystalline anisotropy is needed to avoid thermal
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fluctuations and demagnetizing fields that tend to destabilize the magnetization of the
recorded bits [3]. Current studies have been focused on nanocrystalline rare-earth
compounds and CoPt and FePt because of their high anisotropy. Granular CoPt/C films
consisting of Co-rich hexagonal Co-Pt particles in a C matrix have been reported by
Delaunay et al. [4]. However, the films had a low coercivity because of the lower
anisotropy of the hexagonal Co-rich phase. We have recently started a program to
obtain nanocomposite CoPt/M and FePtM (M = Ag, C) films consisting of
magnetically hard CoPt (FePt) nanoparticles in a non-magnetic matrix. In this study we
prepared nanocomposite CoPt/C and FePt/C films consisting of the highly anisotropic
tetragonal phase with coercivities in the range of 2-9 kOe and studied the effects of
particle size, temperature and interparticle interactions on the coercivity.

2. Experimental

The granular structure was obtained by first depositing CoPt/C or FePt/C in a multilayer
form (consisting of 100 repetitions) and subsequently annealing the samples in the
temperature range of 500-900°C. The films were prepared by magnetron sputtering
deposition from pure 1.3 inch targets of CosoPtse or FesoPtsq and C. The base pressure of
the chamber was 3x10® Torr and high purity Ar (99.9999%) was used for deposition at
ambient temperature with a pressure of 5 mTorr. The substrates used were Si(100), 600
pm thick with a naturally grown oxide on the surface. A 150 A buffer layer of C was
used to ensure similarity of growth conditions. The C layers were sputtered using a
power of 60 W DC at a rate of 0.3 A/sec. For CoPt and FePt a DC power of about 10 W
gave a growth rate of 1.4 A/sec and the resulting stoichiometry of the layers was found
to be CossPtss and FeyoPts;. The chemical composition of CoPt and FePt as-made films
was checked by energy dispersive x-ray analysis. X-ray diffraction (XRD) spectra were
collected with a PHILIPS powder diffractometer using Cu-K, radiation. Magnetic
hysteresis loops were measured with an Oxford Maglab VSM and a Quantum Design
MPMSR2 SQUID magnetometer. The microstructure was examined with a Philips
CM20 and a Jeol JEM-2000 FX TEM transmission electron microscopes (TEM).
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The development of magnetic hysteresis in annealed samples was closely related
to the microstructure, which was obtained by transmission electron microscopy. The
evolution of microstructure with aging heat treatment at 700°C is shown in figure 4 for
the Cos4Ptss (SA)/C(3A). The as-deposited films were found to consist of tiny particles
(5 nm) with the disordered fcc structure (Fig. 4a). Upon aging, the ordered fct phase is
formed and the particle size increases. After 10 minutes at 700°C the electron
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diffraction patterns show clearly the presence of
ordered peaks corresponding to fct CoPt and the
particles grow bigger (7-12 nm) (Fig. 4b). After
prolonged heat treatment (60 min) the SAD patterns
are more ordered and the particles become larger (8-
26 nm) (Fig. 4c). In addition very large (micron size)
particles of CoPt are found to coexist with the
smaller particles.

An important parameter that is known to
determine media noise is the magnetic isolation of
the grains. This parameter can be controlled
basically by the amount of carbon in the system,
which determines the interparticle separation and
therefore the interparticle interactions. 3M plots 71
have been used to study interaction effects as shown
in figure 5. Positive SM OMorm=M4~1+2M,)
indicates the presence of exchange interactions while
negative means dipolar interactions. The optimally
annealed CoPt(5A)/C(5A) sample shows, around H.,
a small amount of positive exchange-type

. . ) interactions (Fig.5a) superimposed over a negative
55:; . Zf g:;l;‘gozlmi{ (ijzz: contribution due to magnetostatic interactions.
made, (b). annealed at 700°C for 10 Positive interactions are completely suppressed in
min and (c). annealed at 700°C for higher C content samples CoPt(5A)/C(10A) (Fig.5b)
60 min, where only the negative magnetostatic part remains.

This part of course is difficult to eliminate
completely due to the long-range nature of the dipole interactions.
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possibility for the explanation of this discrepancy is the consideration of the interaction
effects, which are expected to lead to remanence enhancement accompanied by
reduction of the coercivity {11]. However, for interactions large enough to give M,/M, =
0.78 the expected reduction of coercivity is around 10% [12]. Therefore, inetraction
effects may lead to some coercivty reduction in the samples where the grains are not
magnetically isolated but cannot explain the large difference that is observed even in
samples with isolated grains. This difference must be attributed mainly to the fact that
for the relatively short annealing times, which are used to optimize the microstructure,
the ordering of the fct phase is not complete. The splitting of the (002)-(200) reflections
in the XRD patterns corresponds to a ratio ¢/a = 0.99 compared to the bulk value of c/a
= 0.97. Because of this the anisotropy is expected to be lower than that of the bulk
value.

4, Conclusions

In summary, we were very successful in fabricating high coercivity CoPt/C and FePt/C
granular films consisting of highly anisotropic ordered fct CoPt or FePt nanoparticles
embedded in an amorphous C matrix. The particle size and isolation and therefore the
coercivity of the films can be varied by controlling the layer thickness and the aging
heat treatment conditions. The results of this study are very promising and make these
materials attractive as candidates for magnetic recording,
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