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Abstract
A rigorous analysis of diffraction by rectangularly pro-
filed, dielectric gratings is presented. An analytical solu- bx
tion is obtained for the total electromagnetic field. The X L by
approach presented can readily be extended to computa- L
tions for metallic gratings and arbitrarily shaped surface-
relief gratings.

1 Introduction Z

Because of their many potential applications, two- d4

dimensional (2-D) dielectric gratings are of great interest. In
these applications the gratings typically assume functions of z
beam combiners, splitters, or shapers, etc. [1], [2].

The design of such gratings inherently is an inverse Figure 1: A binary, biperiodic grating exposed to the field of
problem, in our case involving Maxwell's equations with an incident plane wave.
boundary conditions. Genetic Algorithms (GA) have shown
promise of coping with this kind of problem. In [31, an ex- 2 Theory
cellent overview is provided on the application of GA to en-
gineering electromagnetics. In the scattering of a homogeneous plane wave Ei(r) =

Genetic Algorithms are stochastic search and optimiza- Eoe-jk'r, characterized by its polarization vector E. and its
tion techniques with many advantages. They tend to produce wave number vector k, by a biperiodically structured object,
globally optimal results, and the target functions are not re- as illustrated in Fig. 1, the total electromagnetic field obeys
quired to be continuous. Another remarkable property is the the Floquet theorem, i.e.
inherent parallelism of GA so that they are ideally suited for [E(r - rmn), H(r - rmn)] = ek [E(r), H(r)] (1)
implementation on a parallel machine.

For a CAD tool to be useful in the design of 2-D grat- for an r, ere by Y L . Hence the total

ings based on GA, an efficient method for analysis is needed. field can be expressed by
With further extensions, the method presented here has the [E(r) ] = [ Emn(Z)] ixei. (2)
required properties. Modified slightly, it has been succesfully H(r) J=. [H, ,Hmn (z)

applied to analyze Multi-Quantum-Well DFB laser diodes in ,7=-M,=-s
a three-dimensional manner as demonstrated in [4]. with am = k. u, + m27r/L. and On = k. u. + n27r/Ly.

In [5], a system of second-order differential equations Lx and Ly denote the periodicity in u, and uy direction,
has been introduced to describe the total electromagnetic respectively. The vector expansion coefficients Emn (z) and
field within a rectangularly profiled, dielectric grating'. This Hmn (z) are the unknowns which must be solved.
system can be regarded as a wave equation with propagation Slicing a scatterer in layers, the permittivity 6(x, y, z) of
constant. In this paper, an analytical solution to this wave each layer at constant z can be expanded into a 2-D Fourier

equation is presented. For the sake of convenience, the wave series
equation willbebriefly derived. E(X, Yz) = M N ,( - e-i-*'• •

i... also called binary dielectric grating. m=-M n=-N
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In a homogeneous layer, e(x, y, z) simply equals Hot. Note 3 Analytical Solution
that in Eqs. (2) and (3), M and N approach infinity. The system of second-order differential equations (4) can

Substitution of expansions (2) and (3) into Maxwell's easily be solved by diagonalizing [ ]2 If P contains the
e right eigenvectors of [%]2 , the propagation constants of the

= d_ waves in the decoupled domain are given by the following
0 �� 2 U(z) + wLC U(z) (4) diagonal matrix

1(z) = (-jwoL)--1 U(z) (5) = - P-1 [y] 2P (15)
dZ

where the following vectors A characteristic admittance and impedance can be defined as

UT = [UT[. T[. is also done in transmission line theory:
[ '..uv(mn) ... IUY'[... ,Ev(m,n),...]] (6) P'(jw 0 LY'P [5z] (16)IT = UT[.. ý. .. ],_T..YHm Yo = Z1 = P-Ijo)t[] (6

y= P-1(jwoC)P[Zz- (17)
with a bijective index transformation v = (2N + 1)r(m +

M) + n + N + 1 are defined. Further, denoting the Kronecker The solutions to the wave equation (4) are exponential func-
product with the symbol ®, the identity matrix by 1, and tions. After rearranging terms, the analytical solutions can
letting ko = w -fo--, diagonal matrices assume the form

2N+1 F 1 [127r TkzT1 •o (18)

[a] = [(k. u.)l + f-u-diag([-M,... ,M] ® [1,..,1])] (8) I(z) TA(z)T I(zo)

= ý-[(k. u%)l + -- diag([1,..., 1]0[-N,..., N])] (9) where
2M+1 T=[P 0 ] (19)

and the block matrices become 0 PY(

L = 1[ - [d].K- 2 [d] 1[ ]N'-2[O 1 (10) = cosh([,•,Jz) sinh([.lz)

.2 _z) [ sinh([ý.,]z) cosh(týlz) J

C o -]2 [/1] 1 Matrix A denotes the chain matrix for one layer. For a ho-
•][B] K/.2_ [d]2  1)mogeneous layer, the eigenvalues are explicitly given so that

where the block Toeplitz-matrix the chain matrix simplifies accordingly.
The electromagnetic field in a structure consisting of

cascaded layers is easily obtained once the chain matrix of
eo e-1 e-2 each layer has been computed. If Ai corresponds to the chain

.h/"2 .+1 FB r_ I ... (12) matrix of layer i in Fig. 1, the electromagnetic field in a plane

F+2 F 0 o j z, z3 < z < Z4 is then given by the product of the respective

• Jchain matrices:

with(z) ] =A 4 (z- z3 )A3 (d3)A2 (d2)Al(di) [U(Z°)]
(21)

,m,O 6 ,,-1 6m,-2 In the same manner, the total electromagnetic field in arbi-
,m = . m,+1 Em,o Em,-1 ... (13) trarily biperiodic structures can be computed to any desired

Em,+2 Em,+1 ,m,O accuracy. This is achieved through slicing the biperiodic re-
gion into layers which are constant in z, so that the above
solution can be utilized; the thinner the layers the higher the

is introduced in Eqs. (4) and (5). accuracy. The overall chain matrix is again calculated as the
Evidently, the diffraction of electromagnetic waves by product of the chain matrices of the respective layers.

objects with periodic structure can be modelled by coupled
transmission lines [6], because they are also described by a 4 Numerical Example
wave equation of exactly the same form as given in Eqs. (4)
and (5). It has to be pointed out that the definition of the ma- In Figs. 2 and 3, the magnitude of the x-component of the
trix for the refractive index squared, YA/2 , allows this compact total electric field is illustrated for the case, that an inci-

formulation, dent Gaussian beam at 65GHz (beam waists w,, = wov =

As in transmission line theory, the square of a propaga- 10mm) is splitted by a binary grating as shown in Fig. 1. The

tion constant in z-direction can be defined in Eq. (4): values of the design parameters are as follows: el = E4 = 1,
2"2 = £-3 = 2.25, di = 8.7mm, d2 = 5.8mm, d3 = 15.0mm,

[ -wLC (14) d4 = 30.5mm, L, = 7.0mm, Lv = 8.3mm, b, = 5.6mm,

Accordingly, a similar wave equation with propagation con- by = 3.3mm. The incident beam has only an x-component,
stant -wo2CL can also be deduced for the magnetic field. so that no y-component of the total electric field exists. The

Note, that the presented formulation is exact, because images have been produced by using a more elaborated ver-
expansions (2) and (3) for M, N -+ oo are both rigorous. sion of the analysis presented here.
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Figure 3: E2 i-component of the total electric field in planes
5 Conclusions x = 0 and Y = 0
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