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Abstract

Interaction of bianisotropic particles in plane regular arrays is under investigation in this
paper. We give a recipe on how to use the particle polarizabilities and the interaction
constants obtained from approximate models so that the energy balance is satisfied and
the physics of the phenomena is kept. Numerical examples are given for arrays of omega
particles.

1. Introduction

To solve a diffraction problem for an array of scattering particles one should, at first, know
the properties of an isolated inclusion given by its polarizability and, second, how the inclu-
sions interact in the array. The polarizabilities as well as the interaction fields often cannot
be calculated exactly. The aim of this paper is to give a method which will allow us to use
the polarizabilities and the interaction coefficients obtained by approximate models so that the
reflection and transmission coefficients will satisfy the energy conservation principle.

2. Energy Conservation in Bianisotropic Arrays

Consider a plane regular array of scattering particles. We will assume that the particles may be
represented as combinations of electric and magnetic dipoles. Thus, every particle is character-
ized by its dyadic polarizability factors -:

P = de" Eloc +aem" Hiocm = --me"Eloc+=m Hioc (1)

We assume that the array is excited by a normally incident plane wave with the fields Ew and
Hext. Every particle is excited by the local fields

Eloc = Eext - p, Hioc = Hext +13m'm (2)

Here f-e and 3m are the interaction dyadics. These dyadics take into account interaction of the
particles in the array. Under our assumptions the array of electric dipoles does not produce
any magnetic interaction field and the array of magnetic dipoles does not produce any electric
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interaction field. Due to this there are no cross terms in (2). As it was shown in our recent work
[1] the interaction dyadics for the considered problem can be represented as

Oe = Re(e) + j- I j 1 n it, )3. = Re(f3 r) + je- '021 t (3)

Here So is unit cell area. As one can see, the last terms in the above relations correspond to
the plane wave field contribution. We can express the local fields in terms of the induced dipole
moments:

El oc  (a,, -( em " amr• me ' (P - (•M-)m ) m4

Hi0 -- (--1me - --1em )(Me p)

The external fields, as follows from (2), can be written as

Eext = (Uee - aem--a me-l ()-1-* (5)"O tam rne (m -amema ---1 ) -/3e"m
__ -1 __ (5)

Hext = (amm -- -1me " mee

The total averaged fields (plane wave fields) in the array plane read

Etot Eext -Jill-It-p-Zee-J+-Zerm.Jm
2 So +(6)

Htt -- ext -=- - t ---- Zm" J + ZMM- Jm

Here, the currents J and Jm are not the average surface electric and magnetic currents. These
vectors can be arbitrarily directed and they represent the normalized electric and magnetic

dipole moments. The dyadic coefficients in (6) can be easily identified from the above formulas:

- s0 [~~ .171= 1 = W=
Zee 2 - oem. * mm, ame) - 3e - j•.it (7)

Zmm= - .----- .aemrn) -- 3m-- (8)
WS 277S-----O)1--.1

ze- =a•- a mm (9)

-' = [2(- e em .M e - 1 mm1  (- -1 1

Zme = j [is Qm M-me &_-=ee e)_ -me deeJ(0

Although different terms have different dimensions, we use the same notation Z for all of them.

Indeed, only Zee has the meaning of impedance.
Let us now suppose that the particles have no dissipation losses. Then, the energy conser-

vation condition

Re{Etot - J* + Jm" H'ot} = 0 (11)

can be written in the dyadic form as

Zee + Zee Zem + Zme

(;)T - T X (12)
Zem + Zme ZMM + Zmm m

Since this should be valid identically for all currents, we find that in lossless arrays

= =t = t
Zee+ Zee = 0, Zmm + ZMm = 0 (13)



341

Zem + Ze = 0 (14)

where t denotes the Hermite conjugate. Consider reciprocal particles. Then Zee and Zmm

are symmetric dyadics. Thus, (13) means that these dyadics are purely imaginary (and the

bracketed expressions are purely real). In other words,

1m 1 e -u )1" r = 167rO 3

e - = (15)

IM amm - ame" aee "e 6m? (16)

and similarly from (14):

Re a.,e- aem a-mm• nme)- aem anm 0 (17)

Re {•(mm - "ame " a em Y m - = 0 (18)

The last two relations are equivalent since in reciprocal media Zme =Ze For a special case

of omega particles with

aee =aee xoxo + aeyeyoyo, -mm = ammzozo, &me = amezoyo, aem = -ameyozo (19)

relations (15) and (16) give

Im{1}fl 6OW 3 
•{ Ia YY 2m 7-oow3

ax 67r [aee amm + a2• 6 "ree ay ap w• (20)

ace amm + ame 61rn

Conditions (17) and (18) lead to the same result, which reads

Re ame 2 =0 (21)
I aeeam + ame)

3. Reflection and Transmission Coefficients

Let us now make the final step. Our main goal is to find the reflection and transmission

coefficients. It is easy to see that they can be found in terms of the introduced parameters
(7)-(10). The parameters are expressed via the particle polarizabilities. In the usual practice

we have the polarizabilities dyadics found from the antenna model or numerically. This gives
approximate results and the values of alphas are not quite correct. We should somehow "correct"

the polarizabilities to find the reflection and transmission coefficients which satisfy the energy
conservation law.

From the other hand, the correction should not lead to significant difference in the array

reflective properties. If we simply skip the scattering terms from the polarizabilities and the

interaction dyadics, i.e. we take &ee and nmm as purely real, aem and ame as purely imaginary,
and leave only plane wave contribution in the imaginary parts of betas, we easily satisfy the

energy conservation conditions (15)-(18). But the frequency behaviour of the array reflection
will change dramatically. It follows from (7)-(8): equating the scattering terms in the alphas

to zero we change the values of dyadics Z. It suggests us to apply additional conditions to
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avoid that. These conditions will keep the non-scattering terms of (7)-(8) unchanged when the
scattering terms in alphas and betas are skipped. Doing so we obtain a system of equations on
the new "corrected" polarizabilities =a=' ==mfm am, and iae" In more detail, the system is

Im(•ee) - Im(==mm) = 0, Re(-em) 0 (22)

and

(==e -=m *=mf, -. rne •m Re (ee ,- em " =-1 ."me }

m (- - em e"1e ' (23)
am am.

I -, -I =-I
--Ira - aee-em a-mm-- me) "-em anmmf

The "corrected" polarizabilities together with the "corrected" betas (only plane wave contri-
bution is included) will give the reflection and transmission satisfying the energy conservation
law.

4. Numerical Results

We have numerically investigated the case of a double array of omega particles under the plane
wave excitation. The polarizabilities were obtained from the antenna model described in [2].
The reflection coefficient values via the frequency together with the energy balance plot are
given on Figure 1 and Figure 2. The solid lines correspond to the corrected alphas and betas,
the dashed lines correspond to the original ones.
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Figure 1: Reflection coefficient as function of Figure 2: Energy conservation as function of
frequency. frequency.
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