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Abstract

The problem of soliton propagation in nonlinearity Kerr medium with linear optical activity
and cubic anisotropy is considered. It is shown that the balance between the nonlinearity
and linear girotropic results in the existence of spatial polarized solitons with fixed states of
polarization. The chirality effect is characterized through the Born-Fedorov formalism and
the results show modifications of the attenuation and nonlinear coefficient compared with
the tipical coeflicients in a nonlinear Schrédinger equation for a normal fiber in a regime of
1,55 and 1,3 pm.

1. Introduction

Chirality was firstly observed as optical activity and it corresponds to the rotation of the po-
larization plane, in a linear isotropic material. Phenomenonlogical studies establishes that the
polarization plane rotation may be predicted by Maxwell’s equations adding to the polarization
P an additional term proportional to V x E. The Drude-Born-Fedorov equations by satisfy-

ing the edge COIldlthIlS[l] allows us to characterize the nonlinear chiral media through by the
equations D = e, E + ¢(V x E and B = uO(H +(V x H), where ¢, is the permittivity and ¢is
the chiral coefficient. The pseudo scalar { represent the measure of chilarity and it has length
units. [2]-[3]. It should also be considered the non local character of theses equations, since the
polarization P (magnetization M) depent not only of E (H) but also of the rotor of E (rotor
of H). Even though from an electromagnetic point of view a homogeneous chiral material may
be discrete by different specific equations [3], in this work we will use the Drude-Born-Fedorov
equations in optical fiber since they are the most adequate for the applications of our interest.

2. Basic Propagation Equation

Using equations the above equations, the corresponding Maxwell’s equations are
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If we make the follow considerations:

e The chiral media has a Kerr type non-linearity characterized by the refraction index such
- 2
that the permittivity is €, = €, + €2 |E| [4], were ¢, is the lineal part and e; is the non
linear part, respectively, of €.
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o That the optical electric field E represent a located wave propagating in the direction
B (7 t) = (& + §9)¥ (7, 1) e Ik7—wot) = Femilhawot) (3)
were ¥ represents the complex envelop.
e That the condition of a slowly variant envelop conditions its may be
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e That the phenomenon of dispersion is included in heuristic form through the relation
Ak=1L198 — 0k2d -18% 82 _ :18% & gla
=35 = ot~ Irootom ~IShR R = wedh

we obtain the following wave equation
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where k' = gk = '61; ; K= —%,—'&; K" = 3w Equation (5) describes the propagation of pulses

in a chiral dispersive and nonlinear optical fiber. The analysis of each term is has follows [4]:
The first term represent the evolution of pulse with distance; The second, third and fourth
terms represent the dispersion of the optical fiber k(= 1/v,) and k" correspond to the chro-
matic dispersion; k' indicates that the pulses moving which the group velocity, while that the
dispersion of the group velocity (GVD) is represented by k", which alters the relative phases of
the frequency components of pulses producing its temporal widening. &” is null in the region of
1.3 um, For values of X less than 1.3 pm, k" is positive (normal dispersion region) and for values
higher than 1.3 pm, is negative (anomalous dispersion region). k™ represent the slope of the
group velocity dispersion, also denominated cubic dispersion and correspond to a higher order
dispersion; important in ultra short pulses and in the second optical window where k" is null
(1.3 pm region). The cubic dispersion, besides, is important in fiber with shifted dispersion to
the region of 1.5 ym. The fifth term is associated with the attenuatlon of the fiber (@), in this
case those losses are weighed by the chirality of the fiber. |¢| ¢ represent the nonlinear effect,
and are due to the Kerr effect, which is characterized by having a refraction index depending
on the intensity of the applied field. An index of this type for the case of optical fiber, means
that there is a phase shift depending on the intensity and since the temporal changes of phase
are also temporal changes of frequency, Its have that the Kerr type non linearity may alter and
widening frequency spectrum of the pulse. This term also depends on the chirality of the fiber.
The last term is highly associated to the chirality of the fiber.

3. Nonlinear Schrédinger Equation

In order to ease up the solutlon of the propagation equation the following changes of variables
is introduced: ¢’ =t — £ " and 2’ = z* , thus the original reference system will be t = ¢/ + - Z - and

2* = 2’ the equation (5) takes the form
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Defining the new variables

1 1 1
_ wo a1 _Bs, __ 1 oty 2_ B o g8 _ PP om
¢ = 5B C=gpt TS \ Shgt o 0T = g0t o (2kok")372
1
Bsk" 1 _ wa
v o= o VR C =1 -k, P—ﬂ—l/g
and operating algebraically we get the non linear Schrédinger equation for a chiral optical fiber.
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4. Analysis of Results

The equation (7) represents the basic modeling of the pulse propagations in a chiral optical fiber
dispersive and nonlinear. This is applicable both in the second and third optical windows. For
the numerical calculation we use k" = —17,4 ps?/km, v = 0, T' = 0, which correspond to the
anomalous region for a fiber length equal to 2.9 kmm . Fig. 1 and Fig. 2 correspond to one-order
soliton with input power peak Py = 0,87 W and C=0,85 and 1,15 respectively. Fig. 2 shows an
increasse of the intensity when the pulse propagates. This effect appears when (kg is negative
so if the losses (I') are included the chirality factor can compensate the typical decrease of the
power pulse of the normal optical fiber. Fig. 3 and Fig. 4 correspond to the second-order
solitons. Here we put Py = 3,49 W, this peak power is required to sopport the second order
soliton. If we compare Fig. 3 and Fig. 4, we see that with (kg positive the signal is less
distorted. Finally, Figs. b and 6 shows the behavior of the third-order solitons, Py = 7,86 W.

5. Conclusion

In this work we have obtain the nonlinear Schrodinger equation for an optical fiber whose core
is chiral dispersive and have nonlinear behavior. The effect of chirality is shown over the term
associate to fiber lossy and to the nonlinear coefficient. The phenomenons that produce the
dispersive effect and nonlinear in a non-chiral optical fiber (which produce the soliton propaga-
tion for example), are affected in case of using a chiral fiber, since to produce the same effect
it will be necessary to operate the fiber in the normal dispersion regimen. The most important
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result in our work it the possibility to use the chirality of the fiber to cancel out losses and non
linearitys of the optic fiber, which would allow to modify radically their behavior as channel of

communications.
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