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Abstract

A widely spaced periodic array of defects in the photonic band gap crystal is studied with the goal
of designing a waveguide with a prescribed narrow bandwidth. Tunnelling of radiation between
the defect sites allows wave propagation along the line of the defects. A design procedure based on
the weakly coupled cavity model is proposed. The frequency shift and the band structure of the
periodic defect waveguide are linked by an analytic relationship to the distance between the defect
sites and therefore can be tuned by varying the latter. Sections of such waveguides can be
employed as ultra narrow band filters in optical routing devices.

1. Introduction

Photonic band gap materials attracted much attention in the context of designing optical and
microwave devices. Recently numerical experiments have shown that line defects in photonic crystals
can be used not only to guide but also to multiplex and demultiplex optical signals [1]. Most
researchers studying the wave guiding by line defects employ photonic band waveguides obtained by
removal or modification of consecutive posts in the periodic structure. The strong coupling between
the adjacent defects produces relatively wideband waveguides.

In this paper, we address the issue of designing photonic bandgap waveguides with a prescribed
narrow bandwidth. Specifically, we concentrate on a problem of a waveguide formed by widely
spaced periodic defects in the photonic band gap crystal. Tunnelling of radiation between the defect
sites allows wave propagation along the line of defects. Sections of such waveguides can be employed
as ultra narrow band filters in optical routing devices. Here, we propose a design procedure based on
the weakly coupled cavity model. This approach resembles the tight binding perturbation theory of the
solid-state physics. A single defect mode with a resonant frequency in the band gap is analyzed first.
Coupling between the periodic defects causes a discrete spectral line to turn into a narrow band of
guided frequencies shifted from the original frequency of a single defect. The perturbation theory
facilitates an approximate calculation of both the frequency shift and the band structure of the periodic
defect waveguide. Furthermore, these parameters are linked by an analytic relationship to the distance
between the defect sites. Consequently, the latter distance can be directly tuned to achieve the
desirable waveguide properties. The design results are verified by a comparison with numerically
rigorous computations employing the current model technique [2].
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2. Formulation

Consider a problem of designing a narrow band waveguide formed by widely spaced periodic defects
in the photonic band gap crystal. The time harmonic electromagnetic problem in an inhomogeneous
dielectric can be cast in an eigenvalue form for the magnetic field H [3]:

EH(r) =- H(r) (1)

where o) is the frequency, c is the free space speed of light, and E) denotes a Hermitian operator
defined by

E)H =vx -~V XH (2)

In (2), E(r) denotes the relative permittivity. Alternatively, the eigen-frequencies can be expressed in

the variational form:

(H,H) (3)

where (.,.) denote the inner product defined by

(F,G)= f F*.G dr (4)

The unperturbed crystal is characterized by a periodic relative permittivity Ep (r). First, consider a

single defect within the periodic structure arbitrarily centered at the origin of the coordinate system.
The localized defect can be characterized by the change in the reciprocal permittivity
d(r) = 1/Ed (r) - 1/Ep (r), where Ed (r) denotes the permittivity of the photonic crystal with a single

defect. We assume that this defect allows for a localized mode H, (r) with a frequency (o falling in

the band gap of the unperturbed crystal. Specifically by analogy to (1),

OP is the operator of the periodic structure and 0 o is the defect operator. The operators Op and

0 o are defined by analogy to (2) via replacing 1/e (r) by 1/rp (r) and d (r), respectively.

Now, we turn to the case of a linear array of defects obtained by a periodic repetition of the
defect. The reciprocal permittivity of the photonic crystal with the linear array of non-overlapping
defects is given by

1 1 + d(r - nb) (6)

E(r) E p(r)
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where the vector b is assumed to be an integral multiple of the lattice vector a, b = ia, £ E N. The

operator 9,

19 = )p + e, O(7)

which comprises a superposition of 9p and shifted operators e. defined by analogy with (2) via

replacing 1/E(r) by d(r-nb) for n E Z.
Following the strong binding perturbation theory [4] for the linear array, we seek a modal

solution of the form

H(r)= XA,H,(r) (8)

where H a (r) = H o (r - nb) and {An } is a set of yet to be determined coefficients. Substitution of (7)

and (8) in (3) yields

(_I n-- om = 
(9 )

nl=- m=-

where

H,, = (H., H) (10)

and

Tn-. = (Hn,9Hm) (11)

Note that due to the periodicity of the array the integrals in (10) and (11) depend only on n-m.
According to variational principle the frequency expressed by (9) is stationary with respect to the

coefficients {A, }. We have

2

Vn =0 .T -- 2 1 =0m]A_=0 (12)

Discrete shift invariant nature of (12) suggest that modal solution of the form Am - Ae j km whose use

in (12) yields

Using (5), we have

TM =9KH.m+ Tm (14)



324

where

T, =J H XenH,,dr=X(H,,0EnH,) (15)

n 0 n*O

Substituting (14) in (13) we obtain

m=-oo ~(16)

SHmejkm

M=-

namely, an expression for the frequency shift of the linear array mode with wavenumber k/b relative to
the frequency of the localized mode. For sufficiently spaced defects we can make the first order
approximation by retaining only the nearest neighbor interactions. Specifically, we have

Vm 0 IHm I<<Ho and Vimj>1 IrTII<<jT0 . On the other hand, T' and To can be

comparable in magnitude. With this approximations and assuming 1O - 0)o << o0, we obtain

c) [To'+2T'cos(k)] (17)

The total bandwidth of the waveguide formed by the periodic array for propagating modes 0 < k < r
is given by

2c2

Aow = 2 T' (18)

Furthermore due to weak coupling and Hermitian property of E),

l'" 2(HE),01 Ho) = 2(0 1 H1 ,Ho) = 2f (o1Hi)*Hodr (19)

Once the localized modal solution is known, equations (18)-(19) allow for straightforward estimation
of the waveguide bandwidth for various spacings between defects, b = ia. Note that in (19),
H, (r) = H, (r - b) and 01 is a local operator. For sufficiently large r, the localized magnetic field

H(r) is decaying exponentially away from the origin. Thus, (19) indicates that increasing f can
reduce the waveguide bandwidth. The bandwidth control by varying defect spacing will be
demonstrated via numerical examples.
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