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Abstract

The phenomenon of light confinement in an isolated quantum dot, provided by the resonant
nature of exciton in QD and diffraction of electromagnetic waves at the dot boundary, is
discussed. It has been shown that at a certain condition the quantum dot behaves as a
microcavity those eigenmodes manifest themselves as additional, geometrical, resonances in
the quantum dot electromagnetic response. The effect of induced magnetization of quantum
dot is predicted and illustrated by the example of magnetic resonances in spherical quantum
dots.

1. Introduction

A fundamental breakthrough in semiconductor device physics is connected with the recent
progress in the synthesis of sheets of nano-scale 3D confined narrow-gap insertions in a host
semiconductor, quantum dots (QDs). In particular, it was predicted that lasers based on QDs
will show radically changed characteristics as compared to conventional quantum well lasers
[1, 2]. The large body of recent results on physical properties of QDs and their utilization for
the QD laser design has been accumulated in a monograph [3].

The key peculiarity of QDs emerges from the 3D confinement of the charge carriers deter-
mined by QD size and shape. However, there exists a class of effects governed by the QD size
and shape, which have not received much attention so far. These effects are related to resonant
nature of the exciton which provides a dramatic resonant discontinuity of the dielectric function
at the QD boundary and, consequently, gives rise inhomogeneity of the electromagnetic field
both inside and outside QD. By analogy with charge carrier confinement, redistribution of the
electromagnetic field energy between the QD interior and exterior under effect of the QD bound-
ary can be referred to as light confinement. Owing to this effect, diffraction of light by QDs are
expected to contribute significantly to the electromagnetic response properties of QDs. In many
cases the role of diffraction can be properly accounted for the formation in QD of depolarization
electromagnetic field, e.g., in dipole approximation of the diffraction theory.

To our knowledge, some physical consequences of the light confinement in an individual
QD first time were considered by Schmitt-Rink et al. [4]. Manifestation of this phenomenon
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in relation to the scanning near-field optical microscopy was discussed by Martin et al. [5] for

geometrically complex mesoscopic systems and by Hanewinkel et al. [6] for QDs. An asymmetry

of optical absorption and gain spectra in single QD because of depolarization field has been

mentioned in Ref. [6]. Recently it has been predicted and experimentally verified that the
light confinement in QD arrays constituted by anisotropically shaped QDs manifests itself as
polarization splitting of the gain band [7] and, in more general case, as the fine structure of
this band [8]. A concept of active composite has been introduced by Ref. [7]. A set of new
effects related to the light confinement in QDs is analyzed in Ref. [9]. One of them, excitation
of geometrical resonances in QD arrays, we consider here in more detail.

2. Electromagnetic Response of a Single QD

Conventional phenomenological model of the gain in a QD is based on semi-classical the-
ory of two-level systems which gives the well-known Lorentzian polarizability of QD: a(w) =

(gO/Eh)[W - wO + i/r]-', and E(w) = Eh[l + a(w)]. Here wo is the exciton resonant frequency
and r is the exciton dephasing time in QD, Ch is the frequency-independent complex-valued
permittivity of the host medium. The phenomenological parameter go is proportional to the
oscillator strength of the transition. Such a primitive model does not take into account effect
of depolarization field which makes the polarizability tensorial for anisotropically shaped QDs
and shifts exciton resonance [7], [8] (for spherical QDs WN wO - go/ 3Eh). The depolarization
field approximation is applicable when the condition n(w) kRvlr?3) <« 1 holds true. Beyond
the scope of this condition, when the wavelength inside QD becomes comparable with its linear
extension, the role of diffraction by QD is irreducible to the effect of depolarization. Below we
discuss this effect restricting ourselves to the spherical QD for simplicity.

Let an isolated spherical QD of the radius R be exposed to external electromagnetic field.
The problem of wave diffraction by a sphere has been exactly solved in the early of century by
using the variable separation in the spherical basis. In view of the condition kRV/j <« 1, which
is valid for any realistic QDs, this solution is essentially simplified [10] and presents the field
outside the sphere by:

{ VV. +(-hk2 {1} +ikV x { ()

where Hertz potentials are given by:

Ile RIJ a~eEo1
]Elm  Jr• T am H• I exp(ikVi-jr)o. (2)

and the electric and magnetic polarizabilities of the sphere, ae,mp(w), are as follows:

ae (w) =3 E(w)F(r.) - E _7 3
[E(w)F(K) + 2Eh](1 - ikRv/h) + i(kReh)2f(K) (3)

a(w) - 1
[F(K) + 2](1 -ikR) + i(kR)2 F(K) (4)

The function

F()=2 sin - K cosn
( -2 _1) sin r + r cosK (5)

is responsible for the diffraction effect.

It can easily be found that the depolarization field approximation comes into play in the
limit F(K) -+ 1. At rI. > 1 the wavelength inside the QD becomes comparable with its linear
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extension, and, as follows from Eqs. (3)-(5), scattered wave field is generated by irradiation
of both electric and magnetic dipoles indicating thus induced magnetism of QDs. Physical
mechanism of magnetization of dielectrics with linear extension compared with the internal
wavelength is related to the excitation of internal TEiql cavity modes (q = ± 1, ±2, ... are the
polar indices of the modes) in scattering object, which thus behaves itself as a microcavity.
Such modes give rise to a curl electric current in its turn inducing nonzero magnetic moment
of the object [11]. The given effect is known in macroscopic electrodynamics; it is observed in
macroscopic dielectric composite materials [12]. A peculiarity of the magnetism in QDs is its
pronounced resonant nature. The eigenmodes indicated are called geometrical resonances. The
term "geometrical" [10] is related to that the resonances occur exceptionally owing to a certain
geometrical configuration of the QD.

The resonant conditions for electric and magnetic geometrical resonances are completely de-
termined by the properties of the function F(K). This function demonstrates a set of resonances
in the vicinity of the exciton frequency, whereas F(K) -+ 1 at 1w - wo I -+ oo reducing the problem
to that considered in Refs. [7], [8]. Thus, the geometrical resonances can manifest themselves in
the vicinity of the exciton frequency wo and certainly disappear far away this frequency region.
However, concerning electrical geometrical resonances we have to conclude that they are not of
interest because they can not be excited separately from the main exciton resonance wN. This is
because both types of electric resonances are excited by electric component of the external field.
Since the intensity of electrical geometrical resonance is a small portion of the main resonance
intensity, its contribution results in small-amplitude beatings on the main line slope. Thus,
higher electrical eigenmodes practically do not influence the main (depolarization) resonance.
Unlike to electric resonances, magnetic ones are excited by magnetic component of the external
field; in such situation placement of a QD in a microcavity in an antinode of magnetic field
creates a possibility to make the effect evident without excitation of the main resonance.

Note also that the magnetic resonance exhibits much longer radiative lifetime as compared
to the main resonance [9]. Furthermore, this lifetime is extremely longer than the intrinsic
dephasing time, which therefore is crucial for possibility to observe the magnetic resonance.

3. Magnetization of QD Arrays

Occurrence of the magnetic geometrical resonance in isolated QDs must lead to magnetization of
a QD array in the vicinity of the exciton frequency, essentially shifted to the blue with respect
to the main resonance observable in experiments. Electromagnetic properties of composites
are usually modeled in the framework of the effective-medium approach using the well-known
Mossotti-Clausius formalism [12]. A homogeneous medium with effective constitutive parame-
ters - such as conductivity, susceptibility and permittivity - is said to replace the composite.
Following to conventional procedure, we present the homogenization of a QD-based composite
with induced magnetic polarizabilities of inclusions.

General expression for the effective permiability tensor of a dilute composite medium com-
prising a regular ensemble of identical, electrically small magnetic inclusions dispersed in a host
dielectric material is as follows:

/Aef f(w) =I 4+7fvm() [i+ fVa-m(W)]-, (6)

where 3 is the lattice tensor completely determined by geometry of the array, &m is the magnetic
polarizability tensor of a single inclusion (for spherical QDs this tensor reduces to scalar quantity
am (4)), fv is the volume fraction of inclusions. The notation 3&m stands for the inner tensor

product. Rigorous derivation of this expression based on the integral equations of macroscopic
electrodynamics has been presented by Khiznjak [10]. An estimate of the array permeability can
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be obtained from equation (6). Using realistic parameters, one can find A - 1 - 0.05 - 0.1. This

is available for observation. For more correct estimate, effects of inhomogeneous broadening has

to be involved in the analysis. Thus, we can conclude that the electromagnetic wave diffraction

by QDs may result in manifestation by QD arrays of magnetic properties although both QD

and surrounding materials are dielectric.

4. Conclusion

In this paper occurrence of magnetic geometrical resonances caused by the excitation of eigen-
modes in QDs, which thus behave themselves as microcavities, is predicted. Having much
smaller intensity as compared to the main exciton peak, these resonances can be evident owing
to their shifts with respect to the main exciton peak and can be excited by placing of QD in a
microcavity in the magnetic field antinode, where the main peak is suppressed. Measurement
of the frequency shift between main exciton and magnetic resonances can be used for direct
determination of the oscillator strength in QDs. In our paper we restricted ourselves to the
spherical model of QD. Different QD configurations like disks or pyramids can be investigated
using direct computation on the basis of the well-developed method of classical electrodynamics
[13].
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