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Abstract

The characteristics of eigen waves of periodical structures consist of 2-D arrays of strip
particles, in particular having the shape of letters C, S and {2 are studied. Analytical and
numerical results are presented. Study of eigen waves can be used for analyze property of
polarization transformation by single complex array and multi-layered one.

1. Introduction

The layered periodic structure can be used as transformer of polarization of reflected and trans-
mitted electromagnetic fields, absorber in the case a loss medium are placed between layers, and
polarized and frequency selective surfaces. They has properties typical for photonic band-gap
crystals. Analysis of characteristics of structure that has finite number of layers and semi infi-
nite structure also can be carried by using the characteristics of eigen waves of infinite periodic
structure [1], [2].

Let’s consider an infinite layered periodic

structure that is shown in the Fig. 1. Each - wl = witl F

layer represents a plane periodic on two di- Eigen wave _;, :_‘ K

rections array of strip particles. The particles 5 L | NN

have a complex shape, in particular, the shape . L | I
of letters C, S and 2. Mirror non-symmetric Lj |\ LG+D) || LG+2) } z
particles, such as S-shaped, are called plano- - -

chiral [3]. All layers of structure are identical. [ | uj<-_'_ u J?-__

If the operators of reflection and transmis-
sion of a single layer are known it is easy to de-
rive a homogeneous system of linear algebraic
equations concerning vectors of amplitudes of
plane waves that are propagated towards each
other in every gap between layers. These form field of the eigen waves of an infinite structure.
The condition of nonzero solution of a homogeneous system of equations is dispersing equation
to which satisfy propagation constants of eigen waves. The distribution of electromagnetic field
amplitude of an eigen wave and its polarization in gaps between layers can be derived from a
solution of the system of equations.

Figure 1: Infinite periodic layered structure of
2-D arrays

2. Equations of Eigen Waves

For the sake of simplicity we shall confine to the most important case for applications. This case
is one-wave scattering by single array on the assumption that both its periods are less than a
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wavelength. Under these conditions reflection and transmission operators of a single layer can be
presented by the second order square matrices. The solution of the problem of electromagnetic
wave scattering by a single array of strip particles of the complex shape is known [4], [5].

Electromagnetic field of eigen wave is the field of plane waves inside layered structure that
propagated along axis Oz in positive and negative directions between the boundaries of neighbor
layers. The field is represented in the j gap between layers as following

W=@ +@, Li+h<z<L(j+1) (1)

Where - . - . .
ﬁ’i ____A‘_?*_eik(z—Lj—h), i =A’J_e—ik(z—L_7—L),

L is the structure period along Oz axis, h is the thickness of layer, it is assumed field time
dependence e~™t. The wave amplitudes of eigen wave between neighbor gaps are transformed
in accordance with formula . o

FH = L (2)
where [ is propagation constant of eigen wave. Wave amplitudes in a neighbor gaps are con-
nected by two vector equations

A‘_:l;j-l — t—eikAA",i + ,r+eikAA",i+1 (3)
A = r“eikAZi + tteibd 4711 (4)

Here A = L—h, r* and t* are reflection and transmission operators of single layer for the cases
of incident of electromagnetic wave in positive “+” and negative “-” directions of axis Oz. After
take into account the Floquet condition (2) we can rewrite these equations for amplitudes plane
waves that forming eigen wave of structure in the gap between layers as following

I - t—eikAe'iﬂL)Az_ —rte*A AT =0 (5)

r'eikA/_fi - (I - t+ei’°AeiﬁL)A’j_ =0 (6)
System of equations are invariant respect to change indexes “+” by “F” and change the sign
of constant of propagation 3 of eigen wave simultaneously. This property is consequence of the
invariant of structure properties respect to choosing of direction of axis Oz.

Let us assume that layers of structure have not non-reciprocal elements and as consequence
the matrix of operator reflection and transmission are symmetrical. In this case and so as we
take into account only propagated partial waves the operators ¥ and ¢~ are equal. If the layer
is symmetric regard to its average plane the matrices of operators r* and r~ are equal also. We
shall restrict for simplicity this case only. The system of equations regard to amplitudes of eigen
wave in this case is follow _ _

(I —te P A — 747 =0 (7)
FAL — (I -1 AL =0 (8)
where { = tei*2, 7 = retkd,

3. Analytical Results

If non-diagonal elements of matrices # and £ are equal to zero there are two independent systems
of equations regard to amplitudes of two line polarized along axis Oz and axis Oy eigen waves.
Dispersion equations have the form

2 cos BL =1+ 82, — 72, 9
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2ty cos L =1+, — 72, (10)

Two eigen waves have different phase velocities in general case.
Let us now suggest that elements of reflection and transmission matrices are in accord with
equations 3 : 3
Top = fyy, tez = tyya f:cy = t:cy

Dispersion equations can be wrote in the form

2(Tgg + Fay) cos BL = 1 + 2, — 72, — 275y (Fzg — zz) (11)
Solutions of equations 11 and 12 are accordingly 8, and (_
. 1 .
el _ _ - 2 =2 . =
= iy [+~ et (i = Fua) + VL a3

where S =1-— 272:1: - 27:3::1: + Zg:x + F:}:z - 2%1:;31: + 4f$y (fwm + Pz + szi?zm + {:w":g:c - E;:z - Fgm) +
472 (B2, + oy — 2oafer — 1).

Eigen waves of structure are line polarized. Polarizations of eigen waves are mutually orthog-
onal. Amplitudes of field of eigen wave that correspond to solution B4 of dispersion equation
have values

. : : ; C ~ ~ (3 =
A=t =cu, Al —2A = m [L+ 720 — 820 F 2y (Faz — Fi0) + V53]
(14)

Value ¢4 is arbitrary constant.

4. Numerical Results

There are line polarized eigen waves only in the more complicated structures consist of arrays
with C, S or {)-shaped strip particles also. Two eigen waves are orthogonal polarized and have
different phase velocities and different stop band frequencies.

Dependence of propagation constants of eigen waves in the structure of S-shaped strip par-
ticles from distance between layers is shown in Fig. 2. Directions of polarization of eigen waves
don’t vary when distance between arrays is varied.

One eigen wave is polarized at the angle approximately equal to 56.7 degrees regard to Oz
axis. The wave has strong dependence of propagation constant from distance between arrays
at resonant frequency region. There are stop band zones of this wave. The width of zone is
increased with increasing reflection of single array. If frequency lower than resonant frequency
a phase velocity of this wave is more than light velocity and it is smaller than light velocity in
opposite case.

Other eigen wave marked by sign L in Fig. 2 is polarized at the angle approximately equal
to -33.3 degrees in regard to Oz axis. This wave has propagation constant the same as one in
free space.

Similar characteristics have eigen waves of C-shaped and Q-shaped layered structures. Both
eigen waves of these structures can have stop band frequency zones.

5. Conclusion

If sizes of array cell are little than wave length in free space only two eigen waves can propagate
in periodic structures of complex arrays of plane particles having any shape. The eigen waves
have linearly polarized mutually orthogonal fields.
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Figure 2: Propagation constant 3 versus distance between layers: array without substrate h = 0,
dy = dy =10 mm, a = 3 mm, ¢; = 7/2, ¢ =0, w = 0.05 mm, d;/A¢ ~ 0.58 is resonant value.

The field of the one eigen wave in the plano-chiral structure of S-shaped strips is polarized
linearly along an average direct line that is similar to the segment of the straight line in a symbol
$. The field of another eigen wave is polarized orthogonal to this direction. The polarization of
eigen waves don’t vary if a distance between layers is varied. The stop band zones is extended at
increasing of the single array reflection. The phase velocity of eigen wave can be both more or
less than the light velocity depending on the frequency that is lower or higher than the resonance
frequency of a strip element of array.

Transformation of polarization doesn’t occur at reflection and transmission of normal incident
plane wave from single array or multi-layer array if incident wave has line polarization coincident
with polarization of eigen wave of infinite structure.

Array of any plane particles has property to transform polarization of normal incident wave
the same as an array of cross-shaped plane particles oriented along directions of polarizations of
eigen waves on condition that reflection and transmission coefficients of both arrays are equal
in selected frequency.
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