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Abstract

We explore the conceptualization of biaxial composite mediums through the process of ho-
mogenization. Biaxiality is found to arise when the component mediums undergoing homog-
enization present two non-collinear distinguished axes. Two possible sources of directionality
in the component mediums are considered: (a) topological and (b) electromagnetic. Exam-
ples of these are investigated by considering the homogenization of particulate components
with (a) non-spherical topologies and isotropic electromagnetic properties and (b) uniaxial
electromagnetic properties and spherical topologies.

1. Introduction

In the context of electromagnetic material properties, the concept of homogenization is both sci-
entifically and technologically important. Composite mediums with complex properties may be
conceptualized through homogenizing relatively simple constituent mediums. Biaxial symmetry
in such homogenized composite mediums (HCMs) is our primary concern here. We build upon
the foundation laid by earlier studies of non-dissipative dielectric [1] and dissipative dielectric-
magnetic [2] biaxial HCMs (wherein further background details may be found) and generalize
to the bianisotropic case. By considering only component mediums of the simplest forms, we
demonstrate that an elaborate HCM form can arise; and through illustrative parametric studies,
we delineate symmetries in the HCM structure.

2. Preliminaries

We consider HCMs derived from only two (distinct) component mediums, each being envisioned
in particulate form; we refer to them as the host medium and inclusion medium. Of the many
formalisms which have been developed in order to estimate the electromagnetic constitutive
properties of HCMs, here we adopt the Bruggeman formalism [3, 4, 5]. The HCMs emerging
from the numerical calculations may be characterized by the bianisotropic constitutive relations1

D(x) = EO M E(x) + y(E-oi;=fCM" H(x), (1)

B(x) = Ve'o*o= M E(x) + O M P H(x). (2)
=HCM =HCM

1Vector quantities are in boldface while dyadics are double underlined. The unit dyadic is denoted by L and
(u., u,, u.) is the triad of cartesian unit vectors. The permittivity and permeability of free space are denoted by
co and po, respectively.
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The HCM constitutive dyadics have a biaxial form which we represent as [1, 2, 6]
C + b (umrUn + ) + i i+ br(umrUn7 + U (3)

(r = IE ý , /-,

where a3 1 and br' are real-valued scalars and we describe the real-valued unit vectors in terms
of spherical polar coordinates as

uý. sin Ox cos OX u. + sin Ox. sin ¢ uy + cos O0X Uz, (4)

(x=r,i; ,.=m,n; r=E,,,).

With one exception, we consider here only constituent mediums with distinguished axes lying
in the xy plane. Consequently, our calculations reveal that the HCM unit vector pairs uxm and
ux always lie in planes perpendicular to the xy plane with the xy plane bisecting the angle
between u~m and unc. The following identities therefore hold

M* = r r M - OX= 0 x= Or= O, (X =ri; =, ,)-(5)

The one exception occurs when we consider ellipsoidal inclusions of varying eccentricity; in this
case one distinguished axis can lie along the z axis and we shall treat this as a special case in
Section 3.1. Furthermore, since all component mediums we consider are reciprocal, results for
the magnetoelectric dyadic C need not be explicitly presented as we find = =

=HCM =HCM =HCM
All graphs are presented with reference to the key given in Table 1. A volumetric proportion

of inclusion medium to host medium of 0.3 is taken for all calculations.

3. Numerical Homogenization Calculations

3.1 Dielectric case

We homogenize a host medium of permittivity ehost = 1.2 1 and spherical topology with an
inclusion medium of permittivity _inc = (3 + 3i) I and ellipsoidal geometry characterized by the
shape dyadic Unc = diag(2, 1, ,). For this particular example (and no others) the identities (5)

do not hold; instead we take =ri r and on, = or,' and plot these angles as a function of -y
in Figure 1. At points where the inclusion shape becomes spheroidal, the unit vectors ur'm all
lie on a common axis and the HCM becomes uniaxial. For all values of Y we find that EHCM

is diagonal and hence the HCM belongs to the biaxial orthorhombic class [7]. This reflects the
fact that in this case biaxiality arises from a geometrical structure based on three mutually
perpendicular principal axes, namely those of the inclusion ellipsoid.

3.2 Dielectric-magnetic case

Here we consider constituents in which the distinguished axes have an electromagnetic, rather
than topological, origin. We homogenize a host medium with constitutive dyadics =host = host

diag(3, 1, 1) and an inclusion medium specified by .Lnc = (1+ i)A and ,=inC (2+ i) A where

E3 cos2 A + sin2 A 2 sin A cosA• 0 1
A 2 sin) AcosA• 3 sin2 A• + cos 2 A 0 , (6)

0 0 1

and both host and inclusion mediums have a spherical topology. Plotted in Figures 2 and 3 as
functions of X are, respectively, the defining angles for the unit vector pairs ur,,, and the
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corresponding permittivity (ar'f and br") and permeability scalars (a,, and brt) . A uniaxial
dielectric-magnetic HCM results when the distinguished axes of the constituent mediums are
aligned. With the exception of the special cases A = 0, 7r/2 and 7r, all eight angles o0'•t, and

and e and r' have distinct values and the biaxial HCM is of the

monoclinic/triclinic type as regards both -HCM and i Mt [7].

We repeat the homogenizations of Figures 2 and 3 but now with a more general host medium
characterized by =host = I.,host = diag(3 + 3i3, 1 +i6, 1 +i6) and with a fixed angle for the inclusion

distinguished axis of A = 500. The angles 0'i are plotted against J in Figure 4. Our findings
for this example may be summarized by:

Re 7-ho atp im T eOSt Re = in=Primrinc =�0 =Oo, 4r=€4, (r=o,,/), (7)

where P•A, are proportionality scalars. Thus, the biaxial HCM structure becomes orthorhombic
with respect to permittivity (permeability) when ratios of real and imaginary parts of Chost and
Einc (uthost and pinc) are equal, despite the distinguished axes of the constituent mediums being

non-p'erpendicular.

3.3 Bianisotropic case

Finally we consider the general bianisotropic case: the homogenization of an inclusion medium
characterized by cinc = 2(1+i) A, inc = 1.5(1+i) A and Sinc = -(inc = (1+i)A where A = 50°,

with a host medium described by fhost = ,host = Chost = _Chost = diag(3+3iJ, 1+i6, 1+i6); and
spherical topology is chosen for both component mediums. The computed biaxial bianisotropic
HCM structure is of the generalized monoclinic/triclinic type with angles o and and

C~f /I r)Ci

scalars a',, andb,, all taking distinct values, in general. The corresponding polar HCM
unit vector angles are displayed as functions of 3 in Figure 5 (the azimuthal angles behave
similarly). At the point 3 = 1 we find that the HCM is orthorhombic biaxial with respect to all
four constitutive dyadics and, as in Section 3.2, the orthorhombic state is not associated with
perpendicularity of the distinguished axes in the component mediums.
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Tablel: Key for Figures 1-5. X =a, b, 0 or q. Figure 1: HCM angles 0',' and t~~vs. inclusion
ellipsoid semi-axis y. (X 0 , in Table 1).
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Figre : 1CManges "~and ~rivs. inclusion Figure 3: 1CýM scalars a',i and br~ vs. inclusion
distinguished axis angle A. (X 0 , in Table 1). distinguished axis angle A. (X =a, b in Table 1).
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