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Abstract

Waveguiding in a thin-film helicoidal bianistropic medium (TFHBM) layer is investigated.
A dielectric TFHBM layer bounded by isotropic dielectric half-spaces is shown to support
guided wave propagation with guide wavenumbers dependent on the direction of signal prop-
agation, thus signalling potential use as a space-guide. The modal fields and power transmis-
sion distributions associated with the guided modes in the proposed TFHBM interconnects
are detailed.

1. Introduction

Implementation of optoelectronic devices requires the development of optical interconnects
which, in addition to providing effective signal transmission, must be simple to fabricate on
integrated circuitry. In this paper, we present a theoretical study which indicates that dielectric
thin-film helicoidal bianisotropic mediums (TFHBMs) are very suitable for realizing optical in-
terconnects. In fact, the adoption of dielectric TFHBM interconnects may result in efficient use
of semiconductor real-estate in electronic chips.

2. Theory in Brief

Suppose a linear, dielectric TFHBM layer completely fills the region Izj • D/2, while the
halfspaces z < -D/2 and z > D/2 are filled by an isotropic dielectric medium whose rela-
tive permittivity scalar at angular frequency w is denoted by c,(w). The constitutive relation
D(r, w) eo &(z, w) - E(r, w) of the TFHBM layer contains the relative permittivity dyadic

f(Z'W) = - * -y(X) -Ei(W) . (X) -.). (1)

Here, the reference relative permittivity dyadic

"ýei(W) = fa(W)U-Uz + fb(W)uxux + 6,(w)uy11u, (2)

where uXyz are the cartesian unit vectors and Ca,b,c(w) are frequency-dependent scalars. The ro-
tational non-homogeneity (along the z axis) of a structurally right-handed TFHBM is expressed
by the dyadic

S (Z) =(u~uX + uyuy) Cos (f) + (Uu11u - uxuy) sin 7( ) + u~u, (3)
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with 2Q as the structural period. The so-called angle of rise X appears in the tilt dyadic

S (x = (u.u + UzUz) cosx + (uzU, - UUz) sinX + Uy U; (4)

typically X > 200 for the sculptured thin films. Guided wave propagation is ensured if c, <
min{fa, Eb, Ec}, with both mediums assumed non-dissipative at the frequency of interest.

Knowing the constitutive relations of the chosen TFHBM layer, we can determine the guide
wavenuinbers which enable guided wave propagation. A specific guided wave mode can be
delineated with the following equations:

E(r) = exp[in(xcos0+ysin4)] e(z,rK,b) (
H(r) = exp[in(xcos0+ysin0)] h(z,n,V) ' oo<z<oo. (5)

Here, the angle V denotes the propagation direction ul = ux cos 0 + uy sin 0, while r. is the
modal guide wavenumber whose values have to be determined.

The leakage fields accompanying a guided wave mode are represented by

E(r) = (bs + bpp-) exp [ik_ (r + Duz)] D
2 Z< 2(6)

H(r) = '(bsp_ -bps) exp ik- (r + 2%uz)] (6

in the lower halfspace, and

E(r) = (c~s + cpp+) exp [ik+ (r - Duz)] > D

H(r) = •(c.p+ - cp s) exp [ik+ (r - 2uz)1 J z - 2' (7)

in the upper halfspace, with b,, bp, c,, and Cp as the amplitudes of the perpendicular- and the
parallel-polarized components. The various vectors introduced in (6) and (7) are given by

u2 1 / (2k~ z k + ru J 2 2 1 / 2

where k = kov/-?, q = / k0 = wVfip = 27r/A\o is the free-space wavenumber, A0 is the
free-space wavelength, and qo = I is the intrinsic impedance of free space. Guided wave
propagation is possible only if r > k; otherwise, energy launched into the TFHBM layer must
leak into the two halfspaces.

On substituting the constitutive relations and the field expressions above into the time-
harmonic Maxwell curl equations V x E(r) = iwB(r) and V x H(r) = -iwfo0 =(z,w) • E(r), a
4x4 matrix ordinary differential equation emerges for the TFHBM layer. Its solution requires
the prescription of boundary values through (6) and (7). Our interest lies in determining pairs of
(., 0) such that not all of the coefficients b,, bp, c8 and cp are null-valued; thereby the dispersion
equation is obtained. For guided wave propagation, values of K denoted by Ks, (r = 1, 2, 3,...),
that satisfy the dispersion equation have to be numerically determined, the roots being indexed
by the integer r in descending order of their magnitudes.

3. Guide Wavenumbers

We implemented the foregoing procedure using the C programming language and the IMSL
C numerical library subroutines for complex linear algebra. The wavelength A,, was fixed at
600 um for all calculations. We tested our computer program for the case of an isotropic,
homogeneous, dielectric slab waveguide. Analytical solutions to the dispersion equation of this
simple waveguide are well-documented - see, e.g., [1]. Setting e, = 1, we simulated homogeneity
and isotropy by choosing e, = fb = f, and taking the limit 1/92 -+ 0. The roots Kr that we



183

obtained corresponded exactly with the analytical results. Furthermore, the calculated mode

shapes and power transmission characteristics of the waveguide also matched the expected power
transmission and mode shape plots.

Now let us proceed to the proposed TFHBM interconnect. Most calculations were made with

{ Ca = 3.8, b = 4.6, c, = 3.0}, in accordance with data from [2]. In general, the guide wavenum-
bers show a strong dependence on the propagation direction (see [3,4] for more details). This is
illustrated in Figure 1, where the guide wavenumbers are indicated for various V5 for a specific
TFHBM interconnect. Thus, the proposed TFHBM interconnect functions as a space-guide
through which signals can be simultaneously transported in different directions with different
phase velocities. This feature emerges from the anisotropic and non-homogeneous nature ofr

TFHBMs, and may be exploited for efficient use of semiconductor real-estate in optoelectronic
circuitry.

* - r increases

-O g g o . *. * *" "n." *" =

.6-a L_ So 0 a oi 00 *S =45O
0 a) =0

1.0 1.2 1.4 1.6 1.8 2.0 2.2

x/ko

Figure 1: Roots of dispersion equation for directions of propagation denoted by the angle V);
A0 = 600 Ilnl, Ca = 3.0, Cb = 4.6, E, = 3.8, X = 300, Q = 200 nm, D = 8 Q = 1600 nm.

Independently of all parameters, the guide wavenumbers ,r for propagation directions ul
and -ut are the same. When the TFHBM layer consists of an integral number of periods (i.e.,
the ratio D/I is an even integer), the additional relation r¢ = holds. This arises because
all three principal axes of e(z, w) rotate through an integral number of turns between the planes
z = -D/2 and z = D/2, thereby imposing a symmetry constraint.

The variability of with 4' is most pronounced around the lower values of Kr (where
solutions of the dispersion equation are more widely spaced). Additionally, the directional-
dependence of K persists for smaller values of D/I, including D/I << 1. Parenthetically, we
also studied the directional-dependence of the guide wavenumbers for a locally uniaxial TFHBM
layer with {ca =c 3.8, Cb = 4.6}; The guide wavenumbers r¢still exhibit a dependence on
but the dependence is weaker than for the biaxial case illustrated in Figure 1.

The number density of guided wave modes is less when D is small. The mode number density
appears to be predominantly determined by the overall thickness D, and is largely unaffected
by the half-period f. Thus, the availability of guided wave modes can be tailored by properly
choosing the layer thickness D.

r has an upper 
bound 

which 
varies 

with 4. For instance, 
n¢

2.049 ko for 4 = 00, whereas Kr < 1.981 ko for V) = 900, in Figure 1. The upper bound decreases
monotonically as 4 increases from 00 to 900. The upper bound on nr varies with X, 4', D, and
Q2 for given Ca, Cb, and C1.
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4. Space-Guide Modes

The modal fields and power transmission associated with the guided wave modes were also

studied. The time-averaged power flow in the propagation direction is given by Pe(z)
½ul • Re [e(z, n, V)) x h* (z, ,, 0)], where the asterisk denotes the complex conjugate. Detailed
numerical study of the modal fields and power distributions revealed that each mode of propaga-
tion inside a TFHBM interconnect can be classified into one of two groups: hybrid electric (HE)
and hybrid magnetic (HM). The modes are hybrid, because electric and magnetic field compo-
nents are present in all directions, along the axial (uz) direction, as well as in the longitudinal
and perpendicular directions in the xy plane. This is unlike the modes in an isotropic, dielectric,
planar interconnect, wherein the modes are either transverse electric (TE) or transverse mag-
netic (TM). Another distinction between the HE and HM modes in the TFHBM interconnect
and TE and TM modes in the isotropic interconnect is that there appears to be no apparent
ordering to the occurence of the HE and HM modes, while the TE and TM modes alternate
with r = 1, 2, 3, ....

For both the HE and the HM modes, the power transmission distributions PI(z) are quite
similar to those of the TE and the TM modes, respectively. In fact, for propagation in any
direction, it is possible to order the guided modes HE, and HMn, (n = 1, 2,3,...), based upon
the similarity of Pj(z), respectively, to PI(z) for TEn and TM, modes. Pe(z) for a given mode
(HEn or HM,) does not vary much with respect to 4 in the space-guide. Regarding modal field
plots, however, there are distinct differences between the HE and the HM modes.

The variation of e I-- e • ut with respect to z for the HE, mode is similar in all directions;
and, in general, the ej vs. z curves for all HE, modes resemble those for a TEa mode in
an isotropic interconnect. Thus, all HEn modes propagating in any direction ul in a space-
guide have similar modal characteristics. However, the h 1 vs. z plots for the HM, modes do
not display these characteristics. Not only are the h± vs. z plots for an HMn mode different
from that of the TM, mode, but also the h1 vs. z plots are distinctly dissimilar for the various
propagation directions. Thus, the dielectric anisotropy and non-homogeneity of the space-guide
impart more significant directional dependence to the mode shapes of the HM modes and less
to the HE modes.

Clearly, the HEn mode launched in one direction will not interfere with the HE, mode
launched in some other direction; and the same holds true for any HMn mode, at least for
small values of n. Indeed, several HE and HM modes of low order can be launched in different
directions, while taking care that their guide wavenumbers are all different. The space-guide
concept is thus well-founded. Obviously, however, hardware requirements will put a limit on
the number of channels a TFHBM space-guide can realistically support in actual circuitry.
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