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Abstract

During the past years we have intensively studied basic properties and field solutions
in homogeneous bianisotropic media. We started from simple isotropic media to ever more
general bianisotropic media. This study has led to some classification of bianisotropic media,
which resembles a pedigree. The pedigree contains two branches. The first branch are so-
called self-dual media, these are generalisations of the chiral medium. The second branch
are factorizable media, these are generalisations of the uniaxial anisotropic media. We think
to have reached some consensus with respect to the pedigree, i.e. we think to have found the
most general media in each of the two branches.

1. Introduction

In this contribution we want to report on some of the findings we obtained during the past eight
years. During this period we have been investigating homogeneous bianisotropic media with
constitutive relations of the form

D=e-_E+ -HI B E _ +p-H, (1)

where c, p, C and _ are the medium dyadics.
We were interested in finding basic field solutions in these media. The fields for any given

source can be found by integration from the fields of an elementary dipole source, i.e. from the
Green dyadics. In general it is not possible to obtain the Green dyadics into closed form. Other
basic solutions are plane waves. Sometimes an electromagnetic field problem can be simplified
by decomposing the fields in two components. Each of these components then propagate in a
"simpler" medium for which the Green dyadics are known. Another way to solve field problems
is the use of duality transformations which allow us to transform field solutions in one medium to
those in another medium. Our aim was to find the most general media for which decomposition
of the fields was possible, for which we could find the plane wave solutions and for which the
Green dyadics could be obtained in closed form. It turned out that these three problems are
intimately interrelated. The common backbone behind these problems is the possibility to
factorize the fourth order "Helmholtz determinant operator".

This study resulted in a hierarchical ordening - which we call a pedigree - of ever more
general bianisotropic media. Basically this pedigree consists of two separate branches. In the
present contribution we will first discuss some basics such as Green dyadics, factorization, plane
waves, decomposition and duality. Then we will focus on the the two branches of the pedigree.

This paper gives only a small overview of the subject, a more rigorous historical overview
with more references can be found in [1].
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2. Green Dyadics and Factorization

The electric Green dyadic Ge(r) is defined as the relation between the electric current density

J(r) and the electric field E(r):

E(r) = -jw Gee(r - r') - J(r)dV'. (2)
V

In a bianisotropic medium this Green dyadic satisfies the equation

,He.(V) -E(i)= -M3(r), (3)

with He (V) the vector Helmholtz operator given by [2]

,H_,(V) = -(V x I - j_)- p-1- (V x I + j() + W_ . (4)

To solve (3) it suffices to find a scalar Green function G(r) that is solution of

detHee(V)G(r) = -6(r), (5)

with detH_,e(V) the Helmholtz determinant operator. The solution of (3) then follows from

A,_A I 
T G(r), (6)

with A__• (V) the adjoint operator of the vector Helmholtz operator. The Helmholtz determinant
operator turns out to be a fourth order operator, which makes, in general, a closed form solution
of (5) impossible. For some classes of media it is possible to factorize this operator as a product
of two second order operators, i.e.

detH__ee (V) = Ha(V)Hb(V). (7)

A medium for which this is possible is called factorizable. Factorizability does not necessarily
mean that we can solve (5) in closed form. However, often a closed form solution is possible or
an elegant series or integral representation.

Sometimes one can factorize the second order dyadic Helmholtz operator:

He!(V) = H. (V) .fHb (V) (8)

where H__a(V) and Hb(V) are first order dyadic operators. For these media it is possible to write
,G, in closed form.

3. Plane Waves

For a plane wave of the form E(r) = E 0 exp(-jk - r) the vector E 0 satisfies the equation

Hee(-jk)• E0 = 0. (9)

A solution different from zero is only possible when k satisfies the dispersion equation

detHf (-jk) = 0. (10)

If we write k as ku with u a unit vector defining the phase velocity propagation direction then
(10) is a fourth order polynomial equation in k and the dispersion surface will be a fourth order

surface. When detH__ee is factorizable the dispersion surface consists of two second order surfaces,
i.e. of two quadrics. For a given value of k the solution of equation (9) gives the polarization of
the plane waves.
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4. Decomposition

With decomposition we mean that the fields can be split in two components as

E = Ea + Eb, H = Ha + Hb. (11)

Both a and b are solution of Maxwell equations for simpler media than the original medium.
These simpler media are called the equivalent media. The most well known field decomposition is

the TE and TM decomposition for uniaxial anisotropic media [3] for which the equivalent media
are isotropic media. This can be generalised to media where the decomposed fields satisfy the
conditions

a, -Ea + a2 "Ha = 0, bl I Eb +b2 Hb = 0, (12)

where a,, a2, b, and b 2 are arbitrary vectors.
Another way to decompose the fields is the Bohren decomposition [4]. In this case the fields

are decomposed as
E = E+ + E-, H = H+ + H-, (13)

with
E± = Y±H+, (14)

with Y± some scalar constants. The most well known medium that allows such a decomposition
is the isotropic chiral medium. Also in this case there are much more general media that allow
a Bohren decomposition.

5. Duality

A duality transformation transforms original fields E and H into dual fields Ed and Hd as

with A, B, C and D arbitrary constants. The dual fields satisfy Maxwell equations in a dual
medium defined by its medium dyadics as

-( -P C D -1 0 C D (6

Using the duality transformation it is possible to transform field solutions from the original
medium to the dual medium or vice versa. For example the Green dyadics between both media
are related through [5]

( Gee,d ~-em,d )=(A B) -ee -em )(0 1)(A B)- 1  (17)Gme,d Gmm,d C D Gme G mm -1 0 C D7

When a medium is invariant under a duality transformation we say it is a self-dual medium.
Only a restricted class of bianisotropic media are self-dual.

6. The First Branch

It turns out that the class of media that are self-dual or that allow a Bohren decomposition or
that allow a factorization of the vector Helmholtz operator is one and the same. These media
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have been studied in [6]-[11]. The isotropic chiral medium is the simpliest representative of this
class. The most general medium of this class is given by

f• = E --,L _ P , = (Za' -+ k -) V C-p, _ =(xa- - k -) V •ip, (18)

with a_ and K arbitrary dyadics.
The Green dyadics for this medium can be written in closed form [11] as follows

G j77 exp (ka+ -r) L(V) exp (-jkD+)\
ee(r) - 2cos 0 - M 4rkD

ji7exp (ka_. r) exp (-jkD-) (19)

2 cos 0 41r (e4(kD- ) (

with

k wV/ft, 1 , D±= -- det• S•/r. r, cos•-- l-x 20 (20)

L+(V) - VV ± k(V-S±) x I+ k2SIldetS± (21)

and where 5± and a+ follow from a decomposition of cos Oa ±- n in a symmetric and an asym-
metric part of the form

cos Oa + K = _S + a± x L (22)

For more information on the media in this branch we also refer to another paper in these
proceedings [12].

7. The Second Branch

The second branch is much more complicated. This branch contains the media that are decom-
posable. It turns out that these media are also factorizable. It took us a long while to find
the medium that has all decomposable and factorisable media as special cases. This medium is
described by rather complicated medium parameters [13]

c = a(z x I + albI + bial) + 7(-RBT + a2b, + b 2al), (23)

S= (x x I +a 2 b 2 + b 2 a 2 ) + a(B_ + ab 2 + bla 2 ), (24)

= r(z x I + alb, + blal) - a(-BT + a 2 bI + b 2al), (25)

_ -a(x x I + a 2b 2 + b 2 a 2 ) + r(_ + alb 2 + bla 2 ), (26)

where a, 77, -r, a,, a2, bl, b 2, x, z and B_ are arbitrary scalars, vectors and dyadics. It turns out
that this medium is also closed with respect to duality transformations. This means that it is not
possible to generalize this medium further using a duality transformation. These observations
made us conclude that (23)-(26) is the most general medium that allows decomposition and
factorisation.

Special cases of the medium (23)-(26) were studied in [14]-[34]. An important special case
are the anisotropic media. The most general anisotropic medium that allows factorization and
decomposition is f = T/_T + ab [24], with as special case the uniaxial anisotropic medium.

Another interesting class of media are the equivalent media of the medium (23)-(26). These
are of the form [13]

-7EBT + a(z x I), p = -rB - a(x x 1), (27)

=aB + 77(xx), = a_ + -(z x_). (28)
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Without loss of generality we assume that rq + a 2 - 1. The Helmholtz determinant operator

for these media can be written as a square. This allows a closed form Green dyadic given by
e(r) {-[(aV x I- jwB) (TV - jwx)] x I

-[(7V + jwz)(rV - jwx) + a 2VV + jwaV(BTxI) + L/x (V- - w 2 (_l)Tdet_]}
3W

ejwc.R- 1 .r- jkD (29)
jw4irV /J VWfD'

with
2= + r?, (R3:T)

R (a2 + [71E~+T) -[t x + TZ*- B - az X x + a(detfl)(~)~ (30)

and
k=w/z-B.x+detB-c.R-1.c, D= r-R-1 r, (31)

where A_ I is shorthand for u. x A u- + u. x _ u, + u, x A_- U. The fact that the Helmholtz
determinant operator is a square also means that the two second order dispersion surfaces
coincide. Each of the equivalent media of a certain original medium have as coinciding dispersion
surfaces one of the two dispersion surfaces of the original medium.
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