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Abstract

A method of introduction of the effective material tensors of bianisotropic multilayered peri-
odic structures based on the approximate calculation of the characteristic matrix of the unit
cell of the system with the help of Campbell-Hausdorff series [1] is developed. Obtained
effective tensors are valid for the use in a wide wave band. This paper is primarily concerned
with a comparison of the accuracy of different approximations, namely, a long wavelength
approximation and approximations, using three and five terms of Campbell-Hausdorff series.

1. Introduction

Attention now frequently focuses on the study of the effective properties of plane stratified
periodic media. In doing so most often a long wavelength approximation is used. For example,
in [2] the coordinate-free formulae for the effective tensors of permittivity E, permeability p and
pseudotensors of gyrotropy a, /3 of the plane stratified periodic bianisotropic systems of the
most general type were obtained. But it is well known [3], [4] that some systems composed
from nongyrotropic layers can possess gyrotropic properties due to their specific structure (i.e.
possess form gyrotropy). Phenomena of this kind can't be explained in the framework of a long
wavelength approximation. To treat such problems it is necessary to extend the wave band, in

which the effective tensors can be used. One way of doing this is to employ an approach [5],
based on the approximate calculation of the characteristic matrix of the unit cell with the help of
Campbell-Hausdorff series. Recently it was shown that by using this approach the effects of form
gyrotropy (bianisotropy) can be really explained in terms of the theory of effective parameters

(see [6], for example). In [6], [7] our consideration was limited by the three terms of this series.
Here we obtain more accurate formulas using the forth and fifth terms of Campbell-Hausdorff

series.
We consider systems formed by a periodic set of plane bianisotropic layers with different

thicknesses In (n = 1, 2,... N, where N is the number of the layers forming the unit cell). The
layers are characterized by the constitutive relations

Dn = EnEn + anHn, Bn = P3nEn + PnHn, (1)

where en, /Ln and an, /3n are the dielectric permittivity, the magnetic permeability tensors and
the pseudotensors of gyrotropy, respectively.

2. Effective Material Tensor Parameters

The characteristic matrix P = exp (ikoIM) of a layer with thickness I relates the six-vectors
(E, H)T at the layer boundaries (ko = w/c). M is some matrix depending on the parame-
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ters of the layers, angle and plane of incidence. Matrix M is given in an explicit form in [7].
Henceforward we shall follow notation used in [7].

Let us consider the system formed by two alternate layers with different thicknesses in and
different sets of tensor constants En, /in, 5,a, IOn (n = 1, 2). In this instance the characteristic
matrix of the unit cell has the form

P = exp (ikoLM) = exp (ikol2M2 ) exp (ikoliM1), (2)

where L = 11 + 12 is the system period and M is the matrix to be found. This matrix can
be expressed in terms of the layers parameters with the help of Campbell-Hausdorff series as
follows

[Ml2 M _]_2_(3

Ml = flM1 + f 2 M 2+if [M2 ,+M] 7r2113A2 {fl [[M 2 , M1 ] , M1 ] + f 2 [[M 1 , M2], M 2]}+"- (3)

where [M2 , M1 ] = M 2M1 - M 1M 2. If 7rln/A < 1, then the series (3) quickly converges and one
can drop the remainder of it after the k-th term. The first and the second terms correspond to
the long wavelength limit. The possibilities of introduction of the effective constitutive tensors
having regard the third term are discussed in [7]. In what follows we shall break the series after
the fifth term.

In perfect analogy with [7] we shall use in (2)-(3) the matrices MI, Mil, M21 , describing
the transformation of the tangential components of the field vectors, instead of M, M 1, M2 ,
and we assume q to be the left and the right eigenvector of each of the tensors En, ,n, an, fi,
(Enq = qEn Enqq,").

To compare the accuracy of different approximations, namely, long wavelength approxima-
tion and approximations, using three and five terms of Campbell-Hausdorff series, let us consider
the most simple case of normal incidence onto the nongyrotropic nonabsorbing layers of the same
thickness 11 = 12 = 1. As this takes place (3) reduces to

1 1n .7]
MI = (Mll + M21) + ir {[M2, MIu] + [[M 2I, Mll], MII - M21]} + (4)

Generally speaking, Campbell-Hausdorff series

Z= +-1IX, Y + iI [X, YI,] + It, t, x]+...(5)

converges provided IiXiI < !-, ,JYgI < !V, where IIXiI = trace xxt 2 is Euclidean valuation

of X. In our case series converges if

7rmax(ll, 12) <n2
A < 4 max(IIMilII, 11M 21ll) (6)

For example, in the case of nonmagnetic crystals with IIjEil - 4.5 (eigenvalues of Ej "- 3.0)
S< 0.039.

After simple calculation we find the effective material tensors of the system at hand
t rl

al ---- = i nA, R. = (ellqxApj - AEjqXplI), (7)
1 1

El = • (ell + e21) + E', Al = 1 (PlI + P21) + ', (8)
2

E' i~rl ( -rl) R14, R' = -RaqX AE - AeIqXR,6, (9)
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*7rl /7.rl\
/ 2 . )-) R., RA = Rgq'Apr + A/tlqxRa, (10)

where Aej = e21 - 6li, API = P21 - All-

It is worth noting that third term of Campbell-Hausdorff series give rise to the effective "ten-
sors of gyrotropy" ai,/3i while forth and fifth terms contribute only in the effective permittivity
and permeability tensors (terms E', p' in (8)).

ZFrom (7),(9), (10) it follows that

IJ ,.ll _< 2 (llclill II"'prll + Il~I.' ll IIp, 11zl), (11)

IIIIJ ll < 2 (ll clIll I I" RQll + II R~ll 1II ll), (12)

IJR'll _<ý 211I 11 (ll ( ,1R.1 + IlR,6ll), (13)

III-ll < 2 IIA/t1iI (II( Il + IIR0I) . (14)

LFrom above estimations and formulae (7)-(10) it is clear that in the convergence range the
contribution of the forth and fifth terms of Campbell-Hausdorff series in effective tensors is far
less than the contribution of third term, and usually may be thought of as negligibly small if
compared with the contribution of the first and second terms. But if in the long wavelength
approximation the system under hand has transversely isotropic permittivity and permeability
tensors, then contribution of the forth and fifth terms can be noticeable. The latter case is of
great concern in investigation of form bianisotropy (gyrotropy), because the manifestations of
gyrotropy are often suppressed due to the permeability(permittivity) being tensors, especially
in the optical wave region [9].

3. Conclusion

In this paper we discussed primarily the comparative contribution of different terms of
Campbell-Hausdorff series in the effective tensors of "permittivity, permeability" and "gy-
rotropy", analyzing the simple case of normal incidence onto the system of nongyrotropic layers.
Obtained estimations holds true for gyrotropic layers too, at least for the short enough wave-
lengths. At normal incidence generalization of formulae (7)-(10) to the case of bianisotropic
layers is not a particular problem.

Of course, derived effective tensors are not true constitutive tensors because generally they
are valid only in the immediate vicinity of normal incidence. It is possible to introduce true
constitutive tensors (i.e. not depending on the angle and plane of incidence) even having regard
to five terms in Campbell-Hausdorff series, but only for some systems with the specific relation
between the layers parameters. Therefore, proposed method is more convenient for analysis
of the effective properties of systems at normal incidence, when there is no restrictions on the
parameters of the layers. Extensive computations made with the use of exact and approximate
formulas are in good accordance.
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