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Abstract

In this paper, we study the effects of a semi-infinite matrix disperse system on the external
electromagnetic radiation in the electrostatic approximation. With the help of our previous
technique, we obtain general expressions for the multipole expansion coefficients of the electric
potential for a sphere accounting for the interaction between ambient particles and the substrate.
The polarizability tensor and resonant frequencies of a single sphere show anisotropy due to the
influence of a substrate.

1. Introduction

Interest in matrix disperse systems (MDS) is stimulated, first of all, by the possibility of
manufacturing materials with predicted optical properties. At the same time, the properties of MDS
may strongly differ from those of the materials used for the formation of MDS [1]. In the theoretical
studies, MDS are usually considered as infinite systems.

In this work, we take into consideration the effects of an MDS interface. Namely, the MDS is
considered as a half space of dielectric matrix with a plane interface separating it from another half
space of homogeneous dielectric. The matrix is filled with spherical inclusions of different diameters
that are randomly located. The results [2] obtained for the system of spheres on a dielectric substrate
can be obtained from our model as a particular case. Basically, this work is a generalization of [3,4].

2. Theory

We consider the semi-infinite MDS consisting of dielectric spheres with different diameters
embedded in a homogeneous dielectric (ambient) as shown in Fig. 1. The remainder of the half space
is filled with another homogeneous dielectric (substrate). The system is placed in the electric field

proportional to e"'. Let Ea(cO),Ej(cO) and Ei(o)) be the dielectric functions of the ambient,

substrate and the ith sphere, respectively, and R, be the radius of the ith sphere.
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Figure 1 Geometry of the semi-infinite matrix disperse system.

Let the wavelength of the external electromagnetic field be much larger than radii of the spheres
and the distances between them. In other words, we use the electrostatic approximation. In such a
case, the potential of the electric field is a result of the interaction of the external field with the MDS
and the substrate and satisfies the Laplace equation

S=(1)
in regions: I - inside MDS (outside of the spheres), II - inside the spheres, EIl - inside the substrate. We
seek a solution of (1) in the following form:

Ve= 1 'ext +IV Z I!-fth spere + 4 slubstrate = - E r -'+ 2ZAjmjimijP i ) -- AjmiFlmi P) (2)
iilm ilm

1?,i"1 =XBnlGlm(Gi) ; (3)
Ml

.= ext + Clj Glmi (,"')" (4)
ilm

O -7 =-(E oxx + E ,Y + Eozz)
v,=-Er= -(aEox + bEoy +CEzz)Vtlext 0 m.c~z

where Fm(F)= r-'Y,.(F); Gim(-)=r'Ylm(T); ji =r-T1 ; - jii'; i is a radius-vector of

the center of the ith sphere; 7' is a radius-vector of the image of the center of the ith sphere.

The coefficients Almi , A'i , B Imi , C Imi , a, b, c are obtained after applying the boundary conditions

for the continuity of the potential and its normal derivative on the limiting surfaces of regions I-II and
I-rII. This leads to the expressions

a=e- ; b=c=l,

A'i -(1)i+m E - E ; Bimj= f (Ami); Cii Aimj 2ea (6)

and to the equation defining AimW
12 M +m2

.+KI 'muj =m r (7)
i1m1 j 11 m1MJ J' I'2 ~ 'imlj

12M2

12md

where

12M2 1,2n 2 Fý1 (T - 12 )+ ( Ea -)E, aH F. x+mj (8a)

•1 ~ ii /I. I Ea i I I,
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l -( a) R211+1

H 122,, _ 1_)2+"h41r 212 +(2 1 +l(L l(L +M)! (L -M)!) 2 (8c
L (21 + 1)(2L + 1) (21, + 1)!(21 --1)!(212 + 1)!(212 -1)!, (8c)

Viirmij -- 11 EjV2co{ OSOf,, + sin +seoe io3,,, - sin (8)-
slnj Ooe IPM (8e)

V3

•o=(Eo, EY, Eoz= E0 (sin 0o cos qposin 0o sin po,cos 0o). (8d)

The explicit form of the functionf in (6) is not needed for further consideration.

Equation (7) can be written in the matrix form MiA == V or ] -'1, that allows us to interpret

k •-, = [i +/,R]- (9)

as the multipole polarizability matrix of the MDS spheres.

2.1 A single sphere on the substrate; The resonant frequencies.

For the single sphere on the substrate, we can obtain the polarizability tensor in the dipole-dipole
approximation using (9) and taking into account (6)

4 f(a{ 0 0

a - 73Ra(E -- Ea, 0 a,11  0 (10)
"J 0 0 oaL

whereO•=[ ++Li(E.-ELa)]-,; (i = , _[); Li = l+liL a - E,; li = 7lix-3;3( Ea + Es

7i = 7, 8(11)

x = Ria is the dimensionless radius of the sphere (a is a typical scale of length).

Let us consider the case of Lorentz's dielectric functions and Ea = 1 (vacuum):

E(2o)=+ 2 -orw L(()=l+ 2_o2 (12)2o - iyo) (too2 _ iy, 0)

The resonant frequency is obtained by using the condition ai (0Os) = oo. In our case it reduces to the

following algebraic equation with respect to the frequency

C0.4 + a 3 o 3 + a 20) 2 + a1 0 + ao = 0, (13)

where

a3
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a2 t)02 + (t0220+ 1 t) 22 1- 2 +a ts0)2+ _to).2p + ' JO) +-( O

3 P2 Ps 6 P)0PS

A solution to (13) neglecting damping (y ='y, = 0) is

((w)I
2  -{y- + Y2 ±+(Y - y 2 )

2 +liY 3  (14)

where y 1  + Y 2 =riOs 2 + Ops 2; Y3 =2Q(O)ps)2

Particularly, for a metallic sphere on the dielectric substrate from (14), using the inequality

0op,/cOp << 1, we obtain the following approximate expressions

((2))2 2 2 / 2

(2)es2W= 2 + p -, 6 0)2s

for the two resonant frequencies.

3. Conclusion

We obtained the general expression for the resonant frequency of the model system, which is a
dielectric sphere in vacuum on a dielectric substrate. The latter results in splitting and shifting of the
resonant frequency depending on a direction of the external field according to (15). This allows one to
suggest that mono-layers of small particles on a substrate possess anisotropic electrodynamical
properties.
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