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Abstract

A technique is presented for the accurate computation of the effective quasistatic permittivity of
lattices containing particles with potentially complicated shape. This technique is based on the
moment method for the computation of the electric dipole moments of the dielectric or conducting
particles. Through proper homogenization of the lattice, a simple formula for the effective
permittivity is given in terms of these particle dipole moments. Verification data is presented for
lattices of dielectric spheres obtained with the T-matrix method. Results are shown for lattices of
dielectric cubes. Mutual interaction between the edges and corners of such a lattice combine to
reduce the effective permittivity to values near the lower Hashin-Shtrikman bound.

1. Introduction

The computation of the effective material constants for lattices of particles has in the past been
restricted primarily to inclusions of canonical shape. For example, Rayleigh's approximate analysis
considered round cylinders and spheres [1] and McPhedran, McKenzie and Derrick considered cubic
lattices of spheres [2, 3]. Additionally, our recent work has produced solutions for multiphase lattices
of spheres and round cylinders [4, 5]. One exception to this canonical shape rule is the work of Sareni,
et al. who considered lattices of rods and disks, among other shaped particles [6, 7].

The objectives of this work are twofold. First, we present a methodology for the computation of
the effective quasistatic permittivity for lattices of complex shaped particles. That is, particles with
edges, comers or other complicated surface features such as those present on cubes (in 3-D lattices)
and square cylinders (in 2-D lattices). This methodology is based on the moment method (MM)
wherein a set of electric potential integral equations is solved for the infinite lattice and the electric
dipole moments of the particles are computed. By properly homogenizing this lattice, we obtain an
accurate effective permittivity that properly captures the scattering by the particles and their
interactions.

The second primary objective of this work is to investigate the effect of the inclusion shape on the
resulting effective permittivity. For example, to investigate the edge effects and the mutual interaction
between particles with sharply defined edges and the resulting effective permittivity.

2. Integral Equation Solution for the Dipole Moments

The first step in the computation of the effective quasistatic permittivity for lattices of complex
shaped particles is the accurate determination of the electric dipole moments of the particles when the
lattice is illuminated by a uniform (but otherwise arbitrary) electric field. We have chosen to use the
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MM for these calculations since the particles may not be of canonical shape. Following the surface
equivalence theorem, exterior and interior equivalent problems are constructed using equivalent single
(Ps) and double (T) layers of charge density [8, 9]. Shown in Fig. 1, for example, is a portion of the
original lattice as well as the exterior and interior equivalent problems.
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Figure 1 Geometry of the original and exterior equivalent scattering problems.

The scattered scalar potentials produced by these two types of equivalent sources are
(D l(riE P, ) =-• I -- Pds'(1

-47rE S' R

D2 (rle, T) fjr.V(I)ds (2)

In our MM solution to this lattice problem, we expand the two types of charge in sets of coincident
constant basis functions

Np, = Ia. T. (r') (3)

n=1

N

r •fJ.T.(r') (4)
n=l

where T, is the nt flat triangular patch on the surface of the scatterer.
Using a simple point matching scheme and enforcing the proper boundary conditions in the

exterior and interior equivalent problems [9], the following set of integral equations can be formed

-- Ia, iff llds. ft. h -.V.( ll_)ds._ (=5).
47roEb n=1 i=1sý R.• 4zceb n=1 =1 )" R.r) 5

Not (a..f_•_ds'j- N hfi'V'( I )ds',=0 (6)
47rE f

4ra . , [s R., 41xb n=1fl" R,.•

where the i summation is over all particles in the lattice and eDt is the constant and unknown

potential of particle 1. The double layer of surface charge we are solving for has zero average value
over the surface so we add the constraint

N

NI3lA. =0 (7)

In matrix form, Eqns. (5) through (7) can be expressed as
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[Z1L Z12]NXN [1]NXI [aINxl ~ n~) NxI

[Z1L Z22 ]NXN [O]NXI [.0 NxlAl]X [ c,1 (8)

Once the matrix equation in (8) has been solved, the electric dipole moments of the particles can
be computed as

p = f(p,p"+ r)ds' (9)
C,

In the case of isotropic lattices, the effective permittivity can be determined using the simple and
accurate expression [4, 10]

E,,eff =1+3 P(10)E"c (10)
1- p/(3eoEnc V)(

We reiterate that after following the methodology presented in this section, this Er, eff properly
accounts for all scattering from (and mutual interactions between) particles that have possibly very
complicated shape. A similar procedure has been developed for conducting 3-D particles as well as
dielectric and conducting complex shaped 2-D cylinders [9, 11].

3. Results

In order to verify the accuracy of this technique, the effective permittivity of a simple cubic (SC)
lattice of dielectric spheres with er = 40 was computed for varying volume fractionf. These results are
shown in Fig. 2. This 8 r,eff compares well with Ereff computed using our T-matrix solution [4]. These
two results deviate by no more than 1% even at ultra-high volume fractions (f> 0.5).
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Figure 2 Computed Ereff for SC lattices of dielectric spheres and dielectric cubes. In both
cases the particles have E,=40. Notice that the two vertical axes have different scales.

Also shown in Fig. 2 is £,eff for a SC lattice of dielectric cubes with er = 40. Unlike the sphere
lattice, the maximal volume fraction for this lattice is 1. For most of these MM cube results, 1304 flat
triangular cells where used to discretize the cubes and 27 unit cells where used to truncate the infinite
lattice sums for the numerical calculations. For volume fractionsf> 0.95, however, it was necessary to
increase both the discretization and the number of unit cells (1890 and 125, respectively) to achieve
less than 1% variation in the electric dipole moment of the dielectric cube.
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While there is no accurate analytically based formula with which to compare these results for the
lattice of dielectric cubes, we alternatively present the Maxwell/Maxwell Garnett (MG) predictions
[12, Arts. 314 and 430]. Interestingly, it is apparent that the MM results for the cubes and the MG
predictions are quite close (up to approximately 9% variation atf = 0.98). Even closer agreement has
been observed for conducting square 2-D cylinders where the maximum variation is less than 0.4% atf
=0.99 [11].

The close agreement between the cube and MG results in Fig. 2 may appear at first glance to be
the result of little mutual coupling between the cubes at high volume fraction. However, our
investigations have shown that this is not the case [11]. Instead, the close agreement in these dielectric
cube results (and other similarly shaped particles shown elsewhere [9, 11]) is likely the result of the
large mutual interaction between the edges and corners of the particles. Interestingly, such interactions
produce a reduction in the polarization of the particles with respect to the isolated case. Consequently,
the effective permittivity of the lattice is reduced almost to the theoretically minimal amounts
predicted by the lower bound of Hashin and Shtrikman [13, 14].
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