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Abstract

The Maxwell Garnett (MG) and the Bruggeman (Br) formalisms are extended to homogenize
nonlinear, two—component, composite mediums. The chosen material topology is ellipsoidal
and weak nonlinearity is assumed. The MG formalism is illustrated by a case in which
both component materials are bianisotropic, but only the inclusion component is nonlinear.
Both component materials are isotropic dielectric in the following case, but only one has
an intensity—dependent permittivity scalar; and the Br formalism is applied to show that
the homogenized composite medium is anisotropic and has cubically nonlinear dielectric
properties. Enhancement of nonlinearity emerges as a significant possibility.

1. Introduction

The Maxwell Garnett (MG) and the Bruggeman (Br) formalisms for the homogenization of linear
composite mediums formed by randomly dispersing electrically small, bianisotropic, ellipsoidal
inclusions in bianisotropic host materials can be extended to composite mediums comprising
nonlinear materials. We illustrate this extension with an example for each formalism. The
nonlinearity is assumed as weak and, therefore, perturbatively tractable.

In the first example, both component materials are bianisotropic, but only the inclusion ma-
terial is nonlinear. The effective constitutive properties of the homogenized composite medium
(HCM) are estimated using the MG formalism. The linear and nonlinear properties of the HCM
are estimated separately in consequence of two assumptions: the nonlinearity of the inclusion
material is weak, and the composite medium is dilute [1].

In the second example, both component materials are isotropic dielectric, but just one of
them has an intensity—dependent permittivity scalar. Application of the Br formalism shows
that the HCM is anisotropic and has cubically nonlinear dielectric properties. The anisotropy of
nonlinearity can be considerably different from the anisotropy of the linearity; and the possibility
of nonlinearity enhancement exists [2].

2. Nonlinear Bianisotropic Composite Medium

Consider a countably infinite number of identical, electrically small; ellipsoidal inclusions that
are similarly oriented but randomly embedded in a host material. Each inclusion has a volume
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v; the number density of inclusions is denoted by N; while f = Nv, 0 < f <1, is the volumetric
proportion of the inclusion medium. Typically, f < 0.2 for the MG formalism to yield adequate
results. The inclusions are described by a shape dyadic which is real symmetric with positive
eigenvalues [3].

The use of 6-vectors and 6x6 dyadics is very convenient for bianisotropic mediums as it
permits a compact notation. In this notation, the constitutive properties of the host material

are expressed as . .
£'(w) £'Ww)
Glw) = ( M) Ehw)

where the 6-vectors F(w) = [E(w), H(w)]T and G(w) = [D(w), Bw)]¥, the superscript T
denoting the transpose.

With the 6x6 constitutive dyadic of free space denoted by C” (which contains € and po),
the linear and the nonlinear constitutive properties of the inclusion material are best expressed
through the 6-vector Q(w) = [P(w),M )T = Gw) - C’ * F(w), which contains both the
polarization field P(w) and the magnetization field M (w). This 6-vector is split into linear and
nonlinear parts as Q(w) = Ql (w)+ Q"‘(w) Its linear part Qe (w) obeys the constitutive relation

) *Fw) = C"w) * EWw), (1)

Q‘ [Cm(w) C"] » F(w), with C"(w) analogous to C*(w).
The nonlinear properties of the inclusion material are described as follows: Let W =
{wi,wa, ws,...,wn} be a set of M > 1 angular frequencies, there being no requirement that all

members of W be distinct. Suppose there exists an ensemble of M fields F(wy,), (1 < m < M).
Then the simultaneous action of this ensemble of fields in the inclusion material gives rise to the
nonlinear part of Q(w) at w = w™. The j—th element of this 6-vector is given by

M
™) = Z Z Z Z {X?J’-,jz...j,,,...jM(w”‘;W) I:Ilen(wn)}, 1<j<6, (2

J1=132=1 Jm=1 im=1

where Xm P (w™; W) represents the nonlinear susceptibilities of the inclusion material.
The angular frequency w™ is simply related to all members of W as w™ = aj w; +agwy + ...+
am wi, with e = %1, (1 < m < M); furthermore, w™ may or or may not lie in W. When
an = —1, Fj, (wy) must be replaced by its complex conjugate on the right side of (2) and in
subsequent derivative expressions.

Details of the implementation of the MG formalism to homogenize the described composite
medium were given elsewhere [1]. In summary, the constitutive relation of the HCM is given by

G(w) = C¥C(w) * Ew) + s(w,w™) Q™ (), we (Wu{w™}), 3)

where the switching function s(w,w™) equals unity when both of its arguments are the same,
but is null-valued otherwise. Expressions for g_M G (w) have been available for about three years
[3], and need not be reproduced here. The nonlinear source polarization-magnetization field is
expressed through [1]

gnls(wnl) — {;_ iw"’ [lﬂ iwnlfgin/h(wnl) . gin/h(wnl)] -1 . Qin/h(wnl)} R gr;lff(wnl)’ (4)

where
6

D DRT Z {x;-‘},,-z...,-m...,-Mw"‘;W)
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Jl=1.‘l2=1 Jm=1  jm=l
M .
};Il l:(lm/MG(wn) . _F_(wn))jn] } , 1< _7 <6. (5)



25

In these expressions, the 6x6 dyadics
_g—i"/h(w) — [gin(w) _ gh(w)] . X_""/h(w), (6)
. H 1 -1
lzn/p(w) — {; +iw 2’"/”(0.)) . [gm(w) _ gp(w)]} y, P= h, MG, (7)

while D"‘/ P (resp. D ;m/ P} is the 6x6 depolarization dyadic of an ellipsoidal (resp. spherical)
exclusion region in a linear medium with C? as its constitutive dyadic [3].

The presented formalism is general in ‘that it can be used to examine harmonic generation,
parametric oscillation, self-focusing, stimulated Raman scattering, and a multitude of nonlinear
phenomenons. It also updates and extends our previous work on the MG formalism for complex
nonlinear composite mediums [4, 5].

3. Anisotropic Dielectric Composite Medium with Intensity—-Dependent Per-
mittivity Dyadic

Next, we implement the Br formulation for homogenizing a mixture of two dielectric materials.
For the sake of illustration, here only one component material is assumed to be nonlinear: it
possesses an intensity-dependent permittivity scalar. Accordingly, ¢® = €* I, ™ = €[ =
(e +€nE?) I, p* = pi" = pol, and the remaining components of C* and C™ are null-
valued. The w-dependences are not explicitly identified, as both the linear and the nonlinear
fields vibrate at the same frequency. Both component materials are assumed to have parallel
ellipsoidal topologies. As both component materials are treated in the same manner in the Br
formalism, the labels in and A lose the meanings they have for the MG formalism, and the results
are valid prima facie for f € [0, 1].
The Br formalism requires the solution of the dyadic equation [3]

f( "I—¢ ) . (éin/Br) +(1-f) (e I—¢ ) . (éh/Br)_1=g, (8)

where _ .
é‘ln/Br :£+iw21n/3r . ( £ € ) (9)

and X' h/Br is defined similarly; while gi"/ Br and Qh/ Br are 3x3 depolarization dyadics.
The HCM is anisotropic, and the Br formalism predicts its permittivity dyadic as [3, 2]

1en

Br Br Br
= € Uglty + € Uy + €77 U, . (10)

2
A perturbative treatment permits the ansatz gB’ o~ _e_f" + gﬁ' El , consistently with our as-

sumption that the nonlinearity of €® is weak; hence,

2 2 2
e e +elr El , €T el elr El ) ef"zezr+62§ _E_l . (11)
Therefore, the Taylor expansions
pr/Br Dp/Br DP/B" El2 —
D ~ D, , p=in, h, (12)
emerge. Expressions for QZ{ Br are available in Ref. [2]. Accordingly,
2
xv/Pr =~ X374 XPP|EP|", p=in, b, (13)
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where
éin/ﬁr I+ in}"/B’ . (efz"_l_— gfr) , (14)
X7 =L+ iwDy/™ + (L-€), (15)
X5 =i [P+ (g L— B) + D/ - (L-€F7)] (16)
X% =i [- Dy e BT+ DA (P L-g7)] - (17)

The local field factor g is estimated, as a first approximation, as g ~ (1/9)|trace {g"/ Br} 12

. . -1
where Y_:;"/ Br _ (&"/ B ') [2].
With the foregoing developments, the nonlinear dyadic equation (8) separates into two parts
[2]: (i) ¢l is the solution of

. -1 . .
¢ =[x +-NETT - r T a-pex] L )
while (ii) €57 has to obtained from
. -1 .
& = [fXP+a-nXMPT - [reen X3P+
FEPL-fn - XP + =P L-£ - X0 (9)

These two equations were solved iteratively on a computer. The obtained numerical results
allowed us to conclude the following [2):

(i) The anisotropy of nonlinearity can be considerably different from the anisotropy of the
linearity in the chosen HCM.

(ii) Enhancement of nonlinearity over that of the inclusion material is possible, the enhance-
ment being anisotropic too.

In closing, we note that the algorithm developed can be easily generalized when both component
materials have intensity—dependent permittivity scalars.
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