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Abstract

A comparison analysis of the Landau-Lifshitz and Casimir forms of the Maxwell equations
in condensed media is made. It is shown that the Casimir form comprises sufficient informa-
tion of the system to solve any electromagnetic problem whereas the Landau-Lifshitz form
demands an additional constitutive equation for surface current. It is shown that the main
difference in these forms is that the Casimir form being free from seeming spatial dispersion
gives more adequate description of effects of spatial dispersion.

1. Introduction

The manufacturing of advanced artificial materials (chiral, percolation and etc.) challenges the
researcher to develop an adequate description of the phenomena observed in these materials.
The new theory must account for multipole interaction and effects of retardation. The theories
of this a kind were well developed for serving phenomena in crystal or dilute systems [1], [2].
Unfortunately, they confine themselves to consideration of weak effects and deal in frame of per-
turbation theory. In frame of these theories one does not bother his head with strong definitions
of involved quantities and concepts. Today we cannot permit ourselves to deal in such a manner.
Here we review the existing forms of constitutive equations in the light of their predictions.

2. Constitutive Equations in Forms Suggested by Landau-Lifshitz and by
Casimir

In the case of spatial dispersion Landau and Lifshitz [3], [4], [5] suggested including all the
induced currents into definition of polarization

a-I—J)LL 5
rrall (1)

avoiding introduction of magnetization. The most general form of linear constitutive equation
looks as:

DL = /Ooo dr /dsr'sz-I;L (7,7, 1) E; (7, t—1) (2)

where DFL = E; +4rPFL, E;, and PL¥ are macroscopic values of electrical induction, electrical
field and electrical polarization. The frequency domain Maxwell equations together with this
constitution equation could be written as:
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wB=c[VxE], -wB"=c[vxH] (3)
(v-B) =0, (v : T)‘LL> =0, (4)

Dt = [ frielf (7, 7u) B (70, )
eLL (7,7, w) / dr exp (iwr) ek (7, 7', 7) (6)

The kernel in (5) decreases with increase of the distance 7 = 7 — 7’. If both the dimension
a of an inclusion and the mean distance d between the inclusions are small in terms of the
wavelength X then the kernel radius in (5) is also small (the case of weak spatial dispersion). In
this case we can expand the field under integral, in the Taylor series. The relation (5) can be
rewritten as:

D' (w,P) = & wP)Ej(,7)= (7)

LLL0O)
( &5 (w, )+ ) E; (0, )

eir) (@, P) Ve +eip (0, ) Vit ..

where eLI(™ are frequency dependent tensors. If during homogenization we separate mean
current, eddy current, and saddle current we arrive at the Casimir form of constitutive equations
based on the following representation of the macroscopic current ([6])

=2 ~
?=%—C<V-%)+C[Vxﬁ] (8)

here _1—3, and @, are the densities of electric dipole and electric quadrupole moments, M is the
density of magnetic dipole moment. The next step is introduction of the magnetic field H and
magnetic permeability u€:

H=B-4rM, B =uCH; (9)

And redefine electrical displacement [7], [6], [8]:

Df = E; 4+ 4nPF — 47V - Q (10)

The current representation (9) implies nonlocal relation of the moment densities to macroscopic
field which results in nonlocal constitutive equations

D¢ = [dreG (P, 7\u) B (w),  Bi= [ @G (PP B (Phw) (D)

Likewise in (7) we can write (11)

ch (wa _7}) = Eg(w1 ?) Ej (w ?) = (12)

C(O) (w, )+
( c(1) (w, 7}) Vk + Egg) (w, _’f}) ViVi+... ) Ej (w, ?)
B; (w, ?) = /‘tij (w, —"-}) E; (w, ?) = (13)
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The Landau-Lifshitz and Casimir constitutive equations must explain and forecast the same
phenomena. In other word there should be an equivalence relation between the tensor in (7)
and the tensors in (12) and (13). It is suitable to write the relation for spatial Fourier transforms:

€iLjL (w, ?) = Eg (w, ?) + (‘%)2 {e,‘kzejnmkkkn [(ugn)_l - 6lm] } (14)

The last relation is often treated as a condition of equivalence of two forms of constitutive
equations. Really, one can reconstruct e (w, ?) from ef} and pf;,, but it is impossible to solve

the inverse problem of reconstruction eg- and uf;‘n from 6{31’. To make the latter problem solvable
it often suggested that e} and, pf; are scalars whereas e is a tensor. The last assumption
seems to be unjustified. Moreover we loose a series of phenomena. For example, the existence
of magnetic longitudinal waves can not be described. If ei(j- and ,u,c,'n are tensors they have the
form:

o = <O () (= )+ ) B, (15)
Kk kak
pS = uCr (w,k) (sz - ’kz”‘) + p (w, k) ’k;" (16)

It is obvious that along with electrical longitudinal waves there may be magnetic longitudinal
waves with pCt, (? . 5) # 0. The examples are stratified medium and composite loaded with
be-helix structures. The waves existing in both media are of evanescent. They cannot propagate
through the infinite system but the may be generated on the boundaries. The irreversibility of
(14) and the existence of the magnetic longitudinal waves means that the Casimir constitutive

equations comprise more information of the system.

3. The Physical Sense of the Fields Governed by the Material Maxwell Equa-
tions and the Boundary Conditions

In order to understand the reason of incompleteness of the Landau-Lifshitz form we have to
consider the problem of the boundary conditions. Dealing with bounded body demands a
procedure of sewing together the solution of the Maxwell equation outside and inside the body
because just on the boundary the Maxwell equations are not valid. If the dispersion equation

k2 = (%)25"" (@, k) uC" w,k), (¥-H)=0, (¥ -E)=o0 a7)

has only one solution for k? the common Maxwell boundary conditions are enough. These
conditions come about from the assumption that we deal with the same fields inside and outside
the medium. In other words the physical sense of the fields E and H should be the same in
vacuum and inside the medium. Saying about the physical sense of the fields implies that there
must be determined a method of measuring these fields. By now almost all authors proceed from
the Rosenfeld Ansatz. Rosenfeld [9] suggested determining the fields investigating the motion
a small probe particle with charge e. Rosenfeld assumed that this particle moves under the
Lorentz force

?=e_ﬁ+e[vx—§] (18)

where E and B are just the fields staying in the Maxwell equations. ”The fields are taken to
be the primitive fields” [10]. The fields D and H are often considered being of secondary kind
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% induction fields [10]. Indeed, one can introduce a new field a and redefine the fields D and
[11).

D'=D + culd, ?=ﬁ+%-g—t6 (19)

The fields l_)>’ and also 1_‘?' satisfy the Maxwell equations. In particular choosing ﬁ' =B we
can pass from the Casimir to Landau-Lifshitz form [11]. Unfortunately, this scheme ceases being
so attracting if we remember that even in absence of the fields a charged particle moving through
the matter looses energy polarizing the surrounding medium. There is another way to determine
the fields. This way is tightly connected with boundary conditions. Temporarily forgetting that
we deal with heterogeneous media let us recall that the field inside the anisotropically shaped
cavity is equal to E (Tf) if the cavity is elongated along the force lines and is equal to D (?p) if
the cavity is flattened along the corresponding direction. This property is a consequence of the
Maxwell boundary conditions. Thus if we assume that the Maxwell boundary conditions are
valid we have the method of measuring all the fields involved in our problem. There is neither
freedom nor uncertainty in definition of any field. Introduction of any auxiliary vector field
results in changing*the boundary conditions.

There are some indications that it is the Casimir form that is accompanied with the Maxwell
boundary conditions. First of all along the surface separating two media may flow a surface
current that is due to difference in eddy currents induced in different media. Another constitutive
equation relating this current to fields should be added to. Thus the Landau-Lifshitz form is
incomplete while describing edge effects including the evanescent waves. The suggestion that
the Casimir form should be supplemented with the Maxwell boundary conditions means that
eg- and /‘l’lcr'n comprise information not only of the wavenumber but also of the impedance. This
fact accounts for the irreversibility of (14).

4. Chiral (Optically Active) Media

It is worth emphasizing that really the problem exists if the effects of spatial dispersion are
important. If it is not the case the situation becomes trivial. Indeed, the Landau-Lifshitz form
produces seeming spatial dispersion. The relation (7) reduces in this case to

B=e(w)ﬁ+§(w)[?x[7c’xz"]] (20)

Employing e;;xk; E, = — (w/c) B; we arrive at the usual Casimir form with scalar permeabil-
ity p = 1/ (1 + iwé€ (w) /c). This seeming spatial dispersion may be a source of some troubles.
Let us consider the phenomenon of chirality. It is well known that the chirality is the effect of
first order in (ka), where is a characteristic dimension of the inclusion and k£ is the wavenum-
ber. Nevertheless truncating the series (7) and (12), (13) at the same order in (ka) may lead to
different consequences. As we shall see the reason of the disagreement is neglect of the seeming
spatial dispersion. In the Landau-Lifshitz form the constitutive equations looks as

m =¢E + fycurlﬁ (21)

where - is a pseudo-scalar. The constitutive equation predicts rotation of the plane of polariza-
tion during propagation. Beside this, the theory employed together with the Maxwell boundary
conditions predicts that in the case of normally incident, linearly polarized wave the reflected
wave is elliptically polarized. Moreover, the main axis of the polarization ellipse is azimuth ro-
tated (effect of optical activity on reflection). Such a behavior is an attribute of non-reciprocal
medium. On the other hand the chiral system made of reciprocal elements should be reciprocal.
The authors of [12] suppose that this behavior is connected with existence of transition layer



21

near the boundary surface. Indeed the boundary breaks the translation invariance. The kernel
in (5) depends not only on difference of spatial variables but also on position of the point of
observation. As a consequence there appear an additional term in the constitutive equation:

I—Dﬁ —¢E + 'ycurlﬁ + [grad'y X ﬁ] (22)
The boundary conditions obtained by the usual way change too [12]
vy OE;
—_ f— —_ = — —— 2
Ey — Egp =0, By — Byt - 5t (23)

The angle of main axis rotation changes his sign but the main result remains: the reflected wave
is elliptically polarized. In the problem there appear a vector gradry. The situation seems to
remain the situation in ferromagnetic and antiferromagnetic where the rotation of polarization on
reflection is a well known effect. Indeed, in ferromagnetic there is the vector of magnetization
and in antiferromagnetic there is the vector L which is equal to the difference of magnetizations
of sublattices. The key moment is that in the last cases the vectors are axial whereas grad~y is
a polar vector. Thus we cannot anticipate the appearance of nonreciprocity. To rest the theory
in [13] the constitutive equation was generalized:

ﬁi —¢F + 'ylcurlﬁ + [grad")’g X f] (24)

Where it is assumed that 4; = 2y,. This relation between the quantities were determined
from continuity of the Pointing vector and strange assumption that [? X 3?/ 3t] # 0. This
corrects the boundary conditions so that the effect of optical activity on reflection disappears. All
these troubles can be avoided if we deal with Casimir (in our case Born-Fedorov) constitutive
equations. There is no effect of optical activity on reflection neither in uniform medium nor
while taking into account a transition layer [11]. The background of complexity in boundary
conditions appears due to incorrect treatment of derivatives in (7). Dealing with effects of
spatial dispersion we must remember that there are two scales in the problem. The first one
is the inclusion dimension a . The second scale is the wavelength. Thus coefficients staying in
(7) in front of derivatives depend on both scales but only those depending on a contribute in
the corresponding term of perturbation theory. The part depending on A should be rewritten
employing the Maxwell equation, relating the first derivatives of E to B. Inso doing we should
take into consideration the term with third order derivative. This term produces the term
fycurlﬁ in the Born-Fedorov constitutive equations.

5. Conclusion

Thus the Casimir form of the constitutive equations is more complete in comparison with the
Landau-Lifshitz form. The Casimir form produces not only wavevector but also the impedance of
the material, whereas the Landau-Lifshitz form demands introduction of additional constitutive
equation for the surface current [15]. This additional constitutive equation usually appears as
modification of the boundary conditions.
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