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Abstract

In this paper we give a review of the current state in the investigations of spatially dispersive
media and, especially, of the problems involving interface boundaries between such media.

1. Introduction

Natural and artificial media are dispersive (though rather weakly sometimes). We know two
types of dispersion: temporal dispersion and spatial dispersion. Temporal dispersion results in
different electromagnetic properties of media at different frequencies. This phenomenon occurs
due to inertiality and (or) resonance behaviour of the medium polarization response. The
effects of temporal dispersion are well known and investigated. No specific knowledge of the
electromagnetic properties of media boundaries is needed to account for temporal dispersion.
Mathematically, dispersion of this kind is described by frequency dependence of the medium
material parameters.

Spatial dispersion is often more complicated to study. One of the reasons of that is difficulty
in studying interfaces between media. Here the medium response is spatially nonlocal. This fact
results in more complicated material relations and the increased complexity gives us differential
equations for the fields having higher order than the usual ones. Hence, to solve a boundary value
problem for a spatially dispersive medium we should use some additional boundary conditions.

Most of the results for spatially dispersive media were obtained for materials with the first-
order spatial dispersion called reciprocal bianisotropic media. The theory shows that for the first-
order spatial dispersion we can find such a form of the constitutive relations that no additional
boundary conditions are necessary. The problem of the additional boundary conditions has
been considered in the literature (e.g., [1, 2, 3]), but no general method for obtaining additional
boundary conditions is available. Moreover, this question still causes conceptual problems, see
recent paper [5] where the very necessity of additional boundary conditions is negated.

2. Theoretical Description of Spatially Dispersive Media

From the point of view of macroscopic electrodynamics the spatial dispersion phenomenon can
be described by two main approaches. The first one deals with integral operators and the
second one uses spatial derivatives of the fields. These approaches mostly lead to similar results




especially when Fourier space-transformed field equations are used. In such a case the set of
the Maxwell equations together with the material relations for a spatially dispersive medium is
reduced to a dispersion equation from which the propagation factors of the medium eigenwaves
can be found. Here the spatial dispersion shows itself by appearance of new dispersion branches
of eigenwaves.

Till today there is some misunderstanding in the macroscopic theory of the constitutive
relations and the boundary conditions for spatially dispersive media. Different authors use
different forms of relations to describe media of the same type. In non-magnetic media all the
polarization effects can be described only with the help of the averaged electric polarization
current in the medium. Using this method (valid also as a model of higher-order dispersion
effects), one writes

D'(w,k) = ¥ (w, k) - B(w, k), B(w, k) = poH'(w,k) 1)

Here £ (w,k) takes into account magnetoelectric interaction and induced magnetism in the
medium. On the other hand, phenomenologically considering non-magnetic media with first-
order spatial dispersion, the relations can be written in a symmetric way with no explicit de-
pendence on the wave vector:

D(w) = Ew)-EBE{w)+&w)- -H(w)

Bw) = -F (w) Ew)+5w) Hw) ®

It is often asked: which form of the constitutive relations is “more correct”: symmetric (2) or
nonsymmetric (1)? The answer is that both are correct! but only with appropriate boundary
conditions.

Indeed, if vectors E and B are considered as defined by the Lorentz force, then D and H
should be considered as auxiliary vectors. It is known that there is some freedom in the definition
of D and H. The Maxwell equations do not change under the following transformation with an
arbitrary differentiable vector T:

D=D'+VxT, H=H +juT (3)

It can be shown that if one properly finds the necessary form of vector T, the two systems of
the constitutive relations (1) and (2) can be converted one into the other.

We want to emphasize here that not only the constitutive relations change under transfor-
mation (3). The boundary conditions involving the auxiliary vectors should be transformed too.
This fact is sometimes ignored and the same boundary conditions (the usual Maxwellian plus
some additional phenomenological conditions if needed) are used together with different sets
of the material relations of a medium. For media with weak spatial dispersion this problem is
discussed in [4].

3. Boundary Conditions

From the above consideration one can see that the boundary conditions and the material relations
are connected, i.e. for different approaches used to describe the response of a material the

1Sometimes in the literature relations (2) are “generalized” to include also dependence on the wave vector (or
convolutions over space coordinate variables). Care should be exersised here because the cross terms in these
relations already come from the Taylor expansion of a space convolution kernel. For modelling reciprocal media
just one space convolution integral is enough to account for arbitrary spatial dispersion effects, as in (1). Note
also that sometimes relations (2) are called local constitutive relations because they connect the field vectors at
the same point in space. This can be misleading because these relations account for first-order spatial dispersion
effects. In fact, first-order derivatives of the electric field are “hidden” here, as it is obvious from the Maxwell
equations.




boundary conditions must be different. Following [2] we can write the boundary conditions for
the tangential field components as

-0 +4
zox(Hz—Hl)z—jw{/6 ADIdZ+./:+0 AngZ}, ZoX(E2~E1)=O (4)

where zg is the unit vector normal to the interface boundary directed from medium 1 to
medium 2. Here the right-hand side of the relation for H represents the surface polarization
current. This current can be calculated as follows. Authors of [2] propose to consider a model
reflection problem. The problem assumes fast but continuous changing of the material parame-
ters through the interface (we denote the character size of the transition region as 4). To solve
such a problem no additional boundary conditions are necessary. One should make here some
assumptions on how the medium parameters vary across the interface layer. If the problem is
solved, we can then find the difference between the smooth and sharp interface models. In (4)
that difference is represented by AD; and AD, which correspond to the first and the second
media, respectively. More exactly, AD = D(z, E)— D (z, E(©)) where D(z, E) is obtained from
the smooth model and D (2, E(®) is given by the sharp model, i.e. by the constitutive relations
supposed to be correct up to the interface boundary. It allows the authors of [2] to conclude
that considering boundary value problems may lead to necessity in new material relations for
the surface polarization current.

From the above consideration we see that the problem of boundary conditions is not so
simple as it may seem at first sight. Even the relations corresponding to the usual Maxwellian
boundary conditions happen to be much more complex in the spatially dispersive media. The
difficulties become yet more significant when the number of the usual conditions is not enough
and some additional relations should be used. How to find these additional conditions? How
do they correlate with the material relations? May they be obtained from the field equations as
the usual ones? There are many questions here.

There is a chapter in [1] devoted to the considered problem. The authors of [1] try to find a
general form of the boundary conditions. This form includes a set of unknown coefficients which
could be then somehow found for particular cases. They propose to use the following form:

D+T-E=0 (5)

Such a condition gives three additional scalar equations for the amplitudes of waves. If the num-
ber of new waves in a medium is greater than three, then some relations with space derivatives
of the fields are needed. Also, here some questions arise: how does dyadic T depend on k and w?
And how to specify the form of I'? The authors of [1] claim that in general only the microscopic
theory can give answers to such questions. However, considering the situation in the vicinity of
an isolated exciton resonance, the form of I' can be specified as shown in [1].

Semiconductor is an example of a spatially dispersive medium. The dispersion effects exist
there, for instance, due to charge diffusion. Phenomena of this kind at microwaves are considered
in [3]. In presence of diffusion the macroscopic medium induced current can be represented as

J =0E — eDV(V - E) (6)

where D is the diffusion coefficient. Eq. (6) can be considered as a material relation for media
with second-order spatial dispersion. Here the order of dispersion means the highest order of
spatial derivatives of field presented in the relation. Second-order dispersion may lead to new
eigenwaves in the medium and it can be necessary to use some additional boundary conditions
there.
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Authors of [3] give special attention to the boundary condition problem. They use an ap-
proach based on the uniqueness requirement. New form of the material relation requires to
repeat the standard uniqueness development with new terms. Considering the difference be-
tween two possible solutions and writing down the Poynting theorem for the difference fields E
and H they obtain:

Re/s {E x H* — ¢DE(V - E*)} - dS + /V {o|BP + eD|V-EP}av =0 (7

From here one can see that some conditions on the normal component of the electric field or on
the divergence of the electric field are required in addition to the usual boundary conditions. For
a dielectric-semiconductor interface this condition reduces to vanishing of the normal component
of the current J at the surface.

In a recent paper [5] entitled “Additional boundary conditions: an historical mistake” the
author claims that no additional boundary conditions are needed at all. Let us consider his
speculations in more details. The author starts from a scalar electric field wave equation

2 2 r+4o0

6__11355:2,_@ + % /_oo de'e(z — ', w)E(z',w) = s(z,w) (8)
Here sources s(z,w) represent equivalent polarization in the transition region (an interface be-
tween free space and the medium is under investigation) induced additionally to that already
considered in e. These equivalent sources replace free-space volume and sources there, as in
Huygens’ principle. Next, the author assumes that the transition layer is negligibly thin com-
pared to the wavelengths of all eigenmodes in the medium, and comes to the conclusion that
the reflection problem has a unique solution with no need for additional boundary conditions.
However, the thickness of the transition layer is comparable to the inhomogeneity scale of the
medium. For example, for interfaces with regular crystals, the layer has thickness of a few peri-
ods of the lattice (for the theory of transition layers see e.g. [6] and references therein). Thus,
the assumption that the transition layer is negligibly thin is in fact equivalent to the assumption
that spatial dispersion effects in the medium can be neglected (because the inhomogeneity scale
is very small compared to the wavelength). Naturally, no additional boundary conditions are
needed in this case.

4. Conclusion

We see how many problems arise when we start to consider boundaries between spatially disper-
sive media. This area of science is very prospective to study and we hope that in the near future
a more complete and logical theory of the boundary problems for spatially dispersive media will
be developed.
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