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Abstract

First, a consistent perspective for the formulation of constitutive dyadics for biaxial medi-
ums - for the anisotropic dielectric and the full bianisotropic cases - is provided. Then,
the connection between the existence of closed-form, infinite-medium, dyadic Green func-
tions and the factorization properties of certain scalar differential operators is explored by
focusing on a special type of homogeneous, anisotropic, dielectric medium. Its anisotropy is
of a higher degree of complexity than an uniaxial medium's but falls short of a fully biaxial
medium's.

1. From Uniaxiality to Biaxiality

An anisotropic dielectric medium of the simplest type has a relative permittivity dyadic e that
is uniaxial. Stated as1

=uni (1)

it employs two complex-valued scalars (i.e., Ca and Cb) and one unit vector (i.e., u) which is
parallel to the sole distinguished axis of the medium [1]. Extending the structure of (1) to the
permeability dyadic and the magnetoelectric dyadics as well, we arrive at a uniaxial bianisotropic
medium [2].

Generalization from medium uniaxiality to biaxiality requires the introduction of a second
distinguished axis. Recently, we [3] put forward a consistent approach to that issue for biaxial
bianisotropic mediums, delineating their frequency-dependent constitutive relations as

D(x) = fOEfbi E(x) + (Eo/•oI)._Rbi 0 B(x), (2)

H1(x) = ( Eo//0) fbi° E(x) + (1/i 0 ) Xbi B(x). (3)

Here, the four constitutive dyadics are given by

fbi = EaL + 6b (Um Un + Un Um) , (4)

a. :QaL+ab (urn u+ num), (5)

1In this paper, vectors axe in boldface; dyadics axe underlined twice; a ° b =j• aibi; A = ab is a dyad
with elements Aij = a, bj; I is the unit dyadic and 0 is the null dyadic; the superscript -1 indicates inversion of
dyadics and differential operators; while x and x' axe the observation and the source points, respectively.
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3 = /a L + /b (um un + un um) , (6)

Sbi= Xa + Xb (um Un + Un rn), (7)

with urn and Un as two unit vectors that are, in general, neither parallel nor anti-parallel to
each other. The simplification urn = ±un leads us back to uniaxial bianisotropic mediums.

The two unit vectors in (4)-(7), and both corresponding distinguished axes [1], are common
to all four constitutive dyadics. Furthermore, these dyadics contain eight complex-valued pa-
rameters: Ea, Eb, Oa, Ob, f0a, /3 b, xa and Xb, while the angle ¢ = cos-1 (Um • un) is real-valued.
Therefore, any biaxial bianisotropic medium is characterized by 8 x 2 + 1 = 17 real-valued
constitutive scalars. A redundancy in this scheme is filtered out by the Post constraint [4]:

Trace (a&i-13) = :4. 3(aa- 3a)+ 2 (ab-/A)C OS (8)

Hence, (4)-(7) actually contain just 15 real-valued independent constitutive scalars. Further-
more, as presently defined, the biaxial bianisotropic medium is a nonreciprocal medium.

A biaxial anisotropic medium [1] arises as a special case when biin (4)-(7). The
biaxiality is thus purely in the dielectric-magnetic properties, and is described by 4 complex-
valued constitutive parameters plus the real-valued angle €. As the Post constraint (8) is then
trivially fulfilled, a biaxial anisotropic medium is uniquely described by 9 real-valued constitutive
scalars.

Perhaps the most attractive feature of the representation (4)-(7) is found in the possibility
that one and the same orthogonal transformation is able to diagonalize all four constitutive
dyadics. Full details about that feature, as well as a comprehensive study of electromagnetic
wave propagation in biaxial bianisotropic mediums, are available elsewhere [3].

2. Dyadic Green Functions

The dyadic differential equation

L(V) -(x, x') = 6(x - x') (9)

constitutes the standard field problem for the electric field phasor, with the exp(-iwt) time-
dependence implicit throughout. The dyadic Green function (specifically, of the electric type) is
denoted by G(x, x'), while 6(x - x') is the Dirac delta function. The specific form of the dyadic,
second-order, differential operator L(V) depends on the type of medium being considered; see
Ref. [5] for the relevant exposition of the general Green function technique.

For brevity's sake, we limit our attention here to anisotropic dielectric mediums, whose per-
meability dyadic equals I and whose magnetoelectric dyadics equal 0. A closed-form expression 2

for G(x, x') for an uniaxial dielectric medium is available in textbooks [1], but none is known
to exist for a biaxial dielectric medium. The latter is not surprising in view of some results
pertaining to the so-called determinant operator of L(V).

An important step towards a closed-form solution is to determine whether the determinant
operator

Hdet = L(V) " Ladj(V) = Ladj(V) M L(V), (10)

can be factorized into a product of two second-order operators, the adjoint operator Ladj (V) in
(10) being always of the fourth order by virtue of the structure of the Maxwell equations. It was

2The dyadic Green function should be expressible through simple mathematical functions which will most often

be scalar Green functions of second-order Helmholtzian operators and derivatives as well as linear combinations
thereof. It does not include representations in terms of integrals, because such representations can be trivially
achieved with spatial Fourier transformations due to the linearity of (9).
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first stated in Ref. [6] - see also Ref. [7] - that the determinant operator can be factorized

only if the relative permittivity dyadic has the structure

= fact AI + ab, (11)

where A is a scalar while a and b are vectors. Parenthetically, the formulas given in Refs. [6, 7]
pertain to the more general anisotropic dielectric-magnetic mediums.

The form of €= act stated above is only sufficient but not necessary for factorization. Fur-

thermore, the relation between factorization and the availability of closed-form solutions is not
clear. In fact, closed-form expressions for dyadic Green functions could not be obtained, despite
factorization, for certain types of uniaxial bianisotropic mediums, as was first observed in Ref.
[8] and explored further in Refs. [9, 2].

3. More than Uniaxial - Not quite Biaxial

We now consider an anisotropic dielectric medium whose relative permittivity dyadic is

f= Ca L + b urn u, (12)

where urn and u,, are distinct unit vectors. The right side of (12) is clearly equivalent in form to
E=fact' In general, the chosen medium is not reciprocal as _ does not equal its transposed dyadic.

The uniaxial medium defined through (1) appears as a specialization of (12) when urn = u,
However, (12) also has a connection to a biaxial structure: Upon decomposition of its right side
into symmetric and skew-symmetric parts, (12) can be rewritten as

a 2( n +u UnUm) + (u nu- urnUm) (13)

The first two terms on the right side of (13) have the exact biaxial structure of (4), whereas
the last term has a typical gyrotropic form. Nevertheless, neither the biaxial dielectric nor the
gyrotropic dielectric medium can be obtained from (13) as special cases - because the last two

terms on the right side of (13) are far too intimately linked to allow those specializations.
For the medium characterized by (12), we obtain [10]

Ladj(V) = HrnL,(V)- k 2(V x un) (V X Urn), (14)

Hdet = -k 2 (1 + T urn un) He Hm , (15)

where k2 = W2 oCaPo, the ratio r = Cb/Ca, and the dyadic operator

Le(V) VV+k2(1+.U-rn un) l+Tu U mrn Un (16)

Of the two scalar, second-order operators appearing in (14) and (15), H_ - V 2 + k 2 is a

standard Helmholtz operator due to the magnetic isotropy of the medium, but

He = V 2 - - - (V X Urn) • (V x un) + k2 , (17)I + •-rur, • un

is only a Helmholtzian operator as it reflects the dielectric anisotropy of the medium. As

anticipated for the chosen medium, it is apparent from (15) that Hdet indeed factorizes as a
product of two second-order operators [10].

Further manipulations then lead to the complete representation of G(x, x') in the form

_(x,x') k 2 (1+,Urn ,u) ,(s(V)ge(xx))+k
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where the scalar Green function

ge(X, x 1 exp[ikD(x,x')] (19)
Vgx ) a•_az 41rD(x,x') (

satisfies the differential equation He ge(x, x') = -6(x - x%), and the structure of the modified
distance function D(x, x') (which also contains ax,y,z) is detailed in Ref. [10].

What remains unknown in (18) is the dyadic function M(x, x'), for which the differential
equation

HeHm M(x, x') = (V x u.) (V x urn) 6(x - x'), (20)

must be solved. As discussed elsewhere [10], no closed-form solution for M(x, x') appears to
emerge from (20).

The medium considered here is the most general type of anisotropic dielectric medium for
which the determinant operator is the product of two scalar, second-order differential operators
of the Helmholtzian type; yet no closed-form expression for G(x, x') appears to exist for this
medium! Thus, we conclude that

(i) while all currently known closed-form, infinite-medium dyadic Green functions are based
on factorizable determinant operators, factorization is not a sufficient condition for the existence
of closed-form, infinite-medium, dyadic Green functions; and

(ii) within the class of anisotropic dielectric mediums, the uniaxial dielectric medium (or any
medium that can be reduced to such a medium by, for example, affine transformations) remains
the most general medium for which a closed-form, infinite-medium, dyadic Green function has
been derived.
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