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ABSTRACT

The sharing and exchange of color images over the Internet pose very challenging problems to color science and
technology. Emerging color standards will solve many of the problems we face today, but existing images of
unknown origin and output devices of unknown calibration will continue to cause problems for many users. This
paper presents a brief overview of available solutions to some of the problems and suggests some directions for
future research. Although most existing solutions are quite primitive and fragile, the rapid advance of computing
technology promises to bring more sophisticated and intelligent image processing algorithms to common practical
use. Image understanding, scene physics, visual calibration, and image perception are four areas of research that
are beginning to make good progress toward a fully automatic quality optimization system for color imaging
applications.

Keywords: Internet, color imaging, automatic calibration, scene statistics, digital image processing

1. INTRODUCTION

When we order a sweater from a web site, how do we know if the color of the sweater is what we like? When
we send a digital camera image to an on-line fulfillment center, how do we know if they can print it with good
tone and color rendition? When we download a color image from a web site and print it on the color printer at
our home, how can we make it come out as beautiful as we see it on our color monitor? These are questions that
we are facing everyday. Color imaging applications for Internet shopping, services, and information gathering
have become ubiquitous. Yet, color images that are exchanged over the Internet originate from widely varied
sources, display /printing devices used to show those images are not calibrated, and viewing conditions are rarely
controlled. So how can the whole thing work? Well, chaotic as it may be, there are several factors that save
us from a total breakdown in such a mess: (1) Our visual system is very capable and very forgiving. With an
amazing grace, it can often adjust to the distortion and extract the information needed. It is not that we do
not see the distortion, it is that we choose not to pay too much attention to it. (2) Devices are built to vaguely
conform to various standards, and those standards are not drastically different from each other. (3) We don’t
know what we are missing. Occasionally we see great pictures on our monitors and we are pleasantly surprised.
We rarely ask, why don’t we get great pictures all the time?

There are three basic classes of technical problems in Internet color imaging: (1) color images of unknown
calibration, (2) imaging devices of unknown characteristics, and (3) viewing conditions of unknown perceptual
effects. Solutions to each of these problems vary from completely manual to fully automatic adjustments, from
closed systems to standardized interfaces, and from approximation to perfection. These problems and their
possible solutions are discussed in this paper, and future research directions are suggested in the discussion.

2. STANDARDIZATION

The major component in the solution of most problems in Internet color imaging is to standardize the protocols
of how color information should be communicated. The protocols have to be complete in all technical details.
For example, it is not sufficient to specify the RGB signals from a digital camera as gamma-corrected video
signals. Ideally, the spectral response functions of the camera should be provided with the camera. However,
most consumers do not know how to take advantages of this type of technical information, or are unwilling to
spend the time to do so. Therefore, national and international standardization efforts are mostly directed toward
simple and packaged solutions. So instead of asking for the manufacturers to provide the technical information
with the products, standards tend to describe a recommended system and its signal specifications, and it is up to
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each manufacturer to produce products that can work “reasonably well” with the standard system. This is a very
practical and inexpensive solution, although it means that the needed technical information is often not available
to the knowledgeable consumers. For example, chromaticity coordinates of the phosphors of a CRT monitor are
usually not provided to the user.

Among the various international standard bodies, ISO, IEC, CIE, and ITU are four of the major organiza-
tions that publish standards of direct interest to the field of color imaging. The International Organization for
Standardization (ISO), the International Electrotechnical Commission (IEC), and the International Commission
on Hlumination (CIE) are the three major organizations that establish voluntary international standards. The In-
ternational Telecommunication Union (ITU) is organized by the United Nations and its standards are regulatory
through government administrations and treaties.!> These international standards are then, in turn, used by in-
dustries to set up proposals for other applications. For example, the ITU-R Recommendation BT.709 (Parameter
Values for the HDTV Standards for Production and International Programme Exchange) and Recommendation
BT.1200 (Target Standards for Digital Video Systems for the Studio and International Programme Exchange) are
two international standards that are widely adopted and adapted in color imaging applications, such as KODAK
PHOTOQYCC Color Interchange Space® and sRGB* color encodings.

In order to facilitate the standardization of color management systems, a non-profit organization, called
International Color Consortium (ICC), was established in 1993.5 The basic idea is to provide a device profile
for every imaging device so that color data produced by one device can be translated into a device-independent
profile connection space (PCS), which can, in turn, be converted into the native color space of another device.
The ICC profile format is described by the document published by the Consortium. Although the interpretation
of the rendering intent of some profile parameters can be ambiguous,® the ICC profiles, if fully implemented by
most imaging hardware and software companies, will be a giant step forward toward solving many (but not all)
problems in Internet color imaging applications. However, for adjustable devices, such as monitors, scanners, and
digital cameras, a fixed device profile is obviously not sufficient. For example, if the contrast or brightness knob
of a monitor is adjusted by the user, the monitor device profile is no longer valid for the status of that monitor.

A major advantage of the device profile approach to color management is that color images can be saved in
the native color space of the device without unnecessary quantization to an intermediate color space.” This is
especially important for 8 bits/color/pixel images. A fundamental problem with color solutions based on standards
is that the color images are at best colorimetrically or perceptually correct (remember, this is a great position
to be in), but may be far from visually optimum in quality. This is partially due to the fact that standards are
related to systems and devices, not individual images. It is also partially due to our lack of understanding in
human perception.

3. IMAGES OF UNKNOWN CALIBRATION

Most color images existing on Internet do not have any calibration information associated with them. Similarly,
many images sent to on-line fulfillment centers are not calibrated. How do we deal with such images?

3.1. Interactive Mode

If a human operator is engaged in processing such images, a good strategy is to first estimate its basic tone scale
metric. Are the digital numbers proportional to linear luminance, log luminance, or video (gamma corrected)
luminance in the scene? These three are the most often used metrics from CCD sensors, film, and video cameras.
We can make the assumed transform (with some variations in parameters) and display the image on a calibrated
monitor to see which of these transforms look best and take a bet. However, most color images are produced
through some nonlinear tone scale curves. Therefore, there will be a lot of work to adjust the highlight and the
shadow to make the image look right with our intended tone reproduction curve. Because many Internet images
are meant to be viewed on CRT monitors, they are very likely to be in gamma-corrected video space (such as
NTSC-RGB or sRGB). The next step is to extract the digital color values from what we think are the neutral
(gray or white) objects and the skin areas. The neutral objects will help us to do a basic color balance. The
skin areas will allow us to estimate the color matrix required to rotate the color axes to the ones we want to use
in our device. This is easier to say than done. Although the unexposed skin area of a given race tend to have
a certain reflectance value, the exposed skin areas tend to vary greatly in lightness. Table 1 shows some sample
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Table 1. Sample measurements of skin color (forehead and cheek).

African L*=376+£13

Arabian L*=615+23
Caucasian | L* =66.3 2.8

Japanese | L* =60.7+4.37
Vietnamese | L* =65.1 £3.1

*=69+1.4 b* =10.7£2.3
*=56+1.1 b*=173+1.8
*=1124£09 | =123+18
*=10.8+£2.36 | b* =17.14+2.19
*=541+0.8 b*=154+1.1

Q8 0 8 8

measurements of (forehead/cheek) skin colors.®1° From the spectral measurement data reported by Edwards and
Duntley,!!? we have computed the tristimulus values of the skin color of various races. In general, the dominant
wavelength of (unexposed) skin is relatively constant across races (at about 584 nm under Dgs illuminant). The
main difference is in the luminance factor (varies from 7% to 45%) and the excitation purity (varies from 17%
to 33% under Dgs). The effect of sun tan is to shift the dominant wavelength toward a longer wavelength by
an amount on the order of 10 nm, while the excitation purity remains about the same. Knowledge of typical
distributions of skin color only gives us some estimates of how much and which way a color correction should be
given. In the interactive mode, an operator can look at the image on a calibrated monitor and make continuous
adjustments as needed.

3.2. Automatic Mode

For many applications, the cost and throughput requirements cannot afford too much operator intervention. In
these cases, automatic algorithms have to be developed so that tone, color, and sharpness correction can be carried
out all by computers, on an image by image basis. Automatic correction requires that the image calibration be
estimated first and then the desired manipulation applied. The first step is the more difficult one of the two and
currently, there is no good solution. However, there are potential research directions that we can see from some
of the existing approaches.

In general, it is not possible to derive the exact relationships between the scene radiances and the digital values
in a given digital image. However, it is interesting to note that when we display or print an image with a wrong
calibration, we can often see from ilie redered image that something is not quite “right”. How can we sense
that? What is it in the rendered image that is telling us that something is not right? Are there some “invariant”
or “inherent” features in natural scenes that our visual system has learned to recognize and when those features
are not reproduced well in an image because of wrong calibration, our visual system will sense the distortion of
those features? It is difficult to imagine that such “invariant” features can exist. However, several studies have
shown that indeed some characteristic feat'ires do exist for natural scenes. For example, the amplitude A of the
radial spatial frequency f of natural scer- : tend to be a power function!®% of the frequency f: A(f) = af™P
and typical value of p is between 0.8 and 1.2. Because this characteristics is found to be relatively insensitive to
calibration,!® it is not useful for estimating the calibration from an image.

3.2.1. Tone correction

One of the features that has been proposed!® for estimating the unknown tone scale calibration is the statistical
property that the log-exposure distribution of a natural scene is approximately a Gaussian distribution. It
is argued*®!7 that this property is due tc the random distributions of surface orientation, reflectance factors,
textures, and illumination, and also part .ly due to the central limit theorem. One interesting observation
from the underlying heuristic reasoning is that the theoretical distribution holds true for any spectral response
function used to measure exposure. This can be used for color correction for images that have mixed illuminants.!®
However, it is very easy to give counter examples in which such a Gaussian property does not hold for individual
images or even for an ensemble of images,'® depending on the contents on the images. For example, if we take an
outdoor picture that includes a significant portion of the sky, the log-exposure distribution of the image is most
likely to be bimodal. One might still argue that each mode of the histogram can be approximated by a Gaussian
distribution. Unfortunately, even a mixture of Gaussians is often not a good model, because if there are one or
more large uniform areas in the image, the :ape of the log-exposure distribution will be quite varied. One way




to reduce the bias introduced by a large uniform area is to sample only where color or exposure signals change
significantly.!® The other way is to allow deviation from normality in a parameterized family of distributions.®

The problem of estimating the unknown calibration can be greatly simplified if we are interested in classifying
the unknown input into one of the three most widely used metrics: linear-exposure, log-exposure, and video
gamma-corrected exposure. For example, a simple way to classify images of unknown calibration is to take
advantage of the fact that the histogram of a log-exposure image is more symmetric with respect to its mean
than a linear-exposure image. If the histogram of the image in question is highly skewed to the right, it is more
likely to be a linear-exposure image. The skewness of a distribution h(z) can be measured by:

skewness = m_33
o
where mj is the third central moment, i.e., ms = [(z — p)® - h(z)dx, and u and o are the mean and the standard
deviation. We have calculated the skewness of the linear-exposure histograms and that of the log-exposure
histograms for 1800 consumer images. Figure 1 shows the skewness distributions for these two image metrics.
The two distributions intersect at skewness = 0.75. The fraction of log-exposure images that have a skewness
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Figure 1. The distributions of skewness for exposure and log-exposure histograms for 1800 consumer images.
(The two distribution curves have been smoothed.)

greater than 0.75 is about 11.2%. The fraction of linear-exposure images that have a skewness less than 0.75 is
about 16.3%. Thus, from the skewness of the histogram alone, we can classify the input image into one of the
two metrics (linear-exposure or log-exposure) correctly more than 80% of the time. In fact, we can improve the
classification by using the skewness of the histogram accumulated only from the edge pixels, thus excluding the
biases from large uniform areas. If we only sample along edge pixels in the images and calculate the skewness of
the log exposure histograms of the edge pixels, we find that the standard deviation of the skewness distribution is
now reduced from 0.59 to 0.42. The mis-classification rate of rejecting a log-exposure image has dropped to 3.8%.
However, the above experimental results are based on the two-class discrimination problem. The algorithm does
not work well when we have to deal with the three-class problem for linear, log, and video metrics.

Suppose that we have successfully estimated the unknown metrics of the input image, what can we do to
improve the tone rendition of the image? This is a much easier problem. Although really robust algorithms are
still being developed, several methods exist for adjusting global or local contrast of an image. For example, a
global contrast adjustment algorithm!® can take advantage of pre-compiled statistical data for some scene contrast
estimator, such as the standard deviation, A, of the histogram of edge pixels. We have compiled such statistics.
Figure 2 shows the distribution of A calculated for 1800 consumer images. Its mean is 0.375 in log-exposure. If
we take £ 3 A (i.e. 6 standard deviations of the log-exposure histogram) as the dynamic luminance range of
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the scene, we have an average log scene luminance range of 0.375 x 6 = 2.25, which corresponds to a luminance
range of 168:1. This number is indeed very close to the average scene luminance range of 160:1 reported by Jones
and Condit in their classical study using actual measurements on many natural scenes.?? Another study?! also
reported that the average standard deviation of the log-exposure histograms is 0.33. The mutual confirmation
of these studies does not mean that the current contrast estimate is accurate, but it shows that the algorithm
can produce a reasonable result with a very simple computational procedure that does not require much prior
knowledge. Further experimental testing is needed to achieve the optimal contrast adjustment. From Fig. 2 one
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Figure 2. The distribution of the standard deviation, A, of the log-exposure histogram of the edge pixels of an
image for 1800 consumer images.

can see that a scene dynamic range can be as high as 0.55 x 6 = 3.3 in log-exposure (or about 2000:1 in exposure)
and as low as 0.2 x 6 = 1.2 in log-exposure (or about 16:1 in exposure). For most images of small dynamic range,
say less than 80:1, experimental results so far show that the contrast adjustment greatly improves their perceived
image quality.

In addition to contrast adjustment, it is also necessary to decide how light or how dark an image should
be display or printed. This problem is called the density balance problem in photofinishing and it is similar to
the exposure control problem in digital camera design. The problem is stated as follows: given a digital image,
determine the digital value that is to be displayed at a given luminance level or printed at a given reflectance,
so that the rendered image looks optimal in tonal quality. Most existing algorithms for density balance are
proprietary and not available in public domain. A well-known algorithm is the integration-to-gray method??
and its many variations. Using a consumer image database in which the optimum balance point (aim) for every
image was determined by three experts, we have tested how well the simple integration-to-gray method works
on consumer images. The database consists of 2697 images collected from consumers. The integration is done in
two ways: averaging in exposure and averaging in log-exposure. The integrated red, green, blue values are used
to compute a neutral balance point by the following equation:

1
L \/g(logR+10gG+logB).
This computed balance point is then compared with the experts’ optimum point. Figure 3 shows the error
distributions along this neutral “luminance” axis. There are two interesting observations from these statistical
data: (a) Averaging in exposure and averaging in log-exposure yield about the same magnitude of estimation
error. (b) Averaging in exposure and averaging in log-exposure have the opposite bias - the averaged exposure
is lower, while the averaged log-exposure is higher than the experts’ aim. In general, the gray world assumption
produces a mediocre estimate for density balance. One of the obvious problem of the integration-to-gray method
is that if there are large uniform areas in an image, they will bias the average to the luminances of those areas.

(1)
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Figure 3. Comparison of Neutral error distributions. Left: averaging in exposure; Right: averaging in log-
exposure.

Again, as we discussed before, an obvious improvement is to sample only on edge pixels'®2? or from active (busy)
image regions.2425

3.2.2. Color correction

Similar to tone correction, there are two steps in color correction. The first step is to estimate the unknown
color calibration and the second step is to apply the desired color manipulation (such as color balance) and
enhancement (such as boosting color chroma).

In tone correction, the estimation of unknown calibration is mainly for deriving the functional relationship
between the scene radiance and the digital image value. Usually, there is no explicit attempt to estimate how to
combine the red, green, blue image values to produce what would be measured by the CIE luminous efficiency
function V(A). The reason is that in tone correction, we are mainly interested in the intensity relationship between
exposure and image value, rather than spectral relationship. When we deal with color correction, the spectral
relations become important. It is no longer sufficient for us to know that our image values are proportional to
linear-exposure or log-exposure. We actually have to know how they are related to the colors we see. Let R, G, B
be the red, green, blue exposures of a pixel in an image and let X,Y,Z be the tristimulus values of the object

color corresponding to that pixel. The simplest approximation of the relationship between R,G,B and X,Y, Z is
a 3 x 3 matrix, M, i.e.,

X R mi; TMiz TMag R
Y | =M| G |=| my map mo G 1. (2)
VA B m3; M3z Ma33 B

Theoretically, a 3 x 3 matrix is an exact transformation if the spectral response functions of the image capture
system are linear combinations of the CIE color matching functions. Because most imaging systems are far from
that, a 3 x 3 matrix may not be a good approximation for our images at all. However, currently, this simple
approximation is as complicated as we can try to estimate.

There are nine unknown elements in M to be estimated. Since in the image capture and printing processes,
an overall scale factor can be and will be adjusted on an image by image basis. This is solved as the density
balance problem we discussed in tone correction. The remaining eight unknowns can be determined from four
pairs of corresponding chromaticity coordinates in (R, G, B) and (X,Y,Z). So, which four possible pairs can
we estimate from an image automatically? Two important pairs are the neutral (gray) color and the skin color.
The problem of estimating the neutral color in the image is called the color balance problem. The existing
algorithms for solving the problem have been reviewed elsewhere.2® Despite many new algorithms developed for
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color constancy, the gray world assumption continues to be the backbone of the color correction algorithms for
most printers and video cameras. But, just how gray is the world? If we average the exposure of all the pixels
in a color image, we obtain 3 numbers: the average red, green, and blue values, which can be represented as a
point in the three-dimensional (R,G,B) color space. In order to remove the exposure differences among images,
the R,G,B aims (established by expert judges) of that image are subtracted from the image averages, so that if
the averages predict the aims perfectly, the point representing the image should fall at the origin of the (R,G,B)
color space. If we do this for 2697 images, we obtain a cluster of points, each representing an image. In order to
show the error distribution from the gray world assumption, we project the errors to the red-blue direction and
the magenta-green direction, because they are close to the eigenvectors of the covariance matrix computed from
all the pixels in the 2697 image. The two chromatic axes are defined as:
(log R — log B)

= ___\/i— [red et blue]
1 - 21 1
t = (log R 0g G + log B) [magenta — green]

V6

Figure 4 shows how the errors are distributed. As can be seen from these figures, the error distributions tend
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Figure 4. Comparison of red-blue and magenta-green error distributions. Left: error distribution in the red-blue
direction; Right: error distribution in the magenta-green direction.

to have higher peaks and wider tails than a Gaussian distribution with the same mean and standard deviation.
The gray world estimation of color balance point is clearly much better than its corresponding estimate for the
density balance point. The standard deviations from the aim values are much smaller, compared with that shown
in Fig. 3.

For detecting skin colors, there are two main approaches. One approach?’~%° is to compile the statistical

distribution of skin pixels and use it with other shape and texture cues to decide if a pixel or a region in a new
input image belongs to skin color. The other approach is to detect human faces in the image.3-3* However, as we
mentioned before, detecting skin regions does not give us a unique chromaticity pair because skin chromaticities are
functions of race, sun tan, scene illumination, and many other factors. Regional, seasonal, and cultural statistics
can give us some prior distribution of skin chromaticities to help the algorithms make the best estimates.

Given the neutral and skin colors, we still need two more pairs of chromaticities before we can estimate the
matrix M. Other candidate colors are sky, soil, and grass. Unfortunately, their natural chromaticities are even
more varied than the skin color. For outdoor scenes, a possible color vector is the daylight locus. It has been
shown?® that for a color imaging system whose spectral response bands are not too wide (say, on the order of 100




nm), the chromaticity distribution of a color image tend to be elongated along the natural daylight locus. This
distribution tendency can also be seen in the data reported in other studies.!® This is mainly due to the mixed
illumination of sunlight and skylight on object surfaces. Because the chromaticity distribution of any given color
image is heavily biased by the content of the scene, this daylight characteristic can be used only when many
images from the same imaging system are available. In practice, this is not an unreasonable constraint because
customer orders tend to come in film rolls or image groups.

3.2.3. Image enhancement

Image capture and display /printing processes invariably introduce blur and noise into the images. Image sharp-
ening and noise suppression are two image enhancement operations that have been studied for many years.3
New algorithms®7-3% using wavelet transforms are also becoming very promising.

In order to sharpen an image and suppress the noise, it is most desirable to have methods for estimating
how much and what type of sharpening is needed, and for estimating the noise level as a function of signal in
the image. Image blur caused by object motion, focus error, camera optics, film, and scanner can be a complex
function to model.* In consumer images, image blur is usually not too serious in the sense that most edges are
still detectable. An intuitive approach for estimating image blur is to detect all high-contrast, straight edges in
the image. By certain heuristic criteria (such as chromatic edges?! and contrast-normalized gradient*?), we can
locate physical edges that are likely to be straight occlusion edges. The blur function can then be estimated
from the edge profiles.?® Alternatively, edge blur can be modeled and the model parameters estimated from the
profiles.

Noise estimation has been studied many times*>*24¢ in the past. A rough estimate of homogeneous, signal-
independent white noise is not difficult to compute whenever the image contains some uniform area. However,
when the entire image is full of busy textures, all existing methods seem to fail. Fortunately, most consumer
images have some uniform area if local shading is removed by polynomial fitting.

4. DEVICES OF UNKNOWN CHARACTERISTICS

In order to achieve good tone and color reproduction, all imaging devices should be carefully calibrated. However,
color calibration requires expensive instruments, technical knowledge, and time-consuming efforts. Therefore,
most monitors and printers used at home and offices are not calibrated at all. As a consequence, images are
typically displayed or printed at less than desirable quality. The chaotic situation is mainly caused by the
lack of well accepted standards. The other major contributor is the stability of most imaging devices, whose
characteristics change with time, temperature, humidity, usage, and other uncontrollable factors. These two
major causes of chaos can be dealt with by consensus of default standards and by development of easy to use
tools for characterizing imaging devices either with inexpensive instruments or with visual judgment.

4.1. Default Standards

Standards are driven by competing forces and that is why they are often compromised solutions. However, no
standard is worse than a sub-optimum standard. The other driving force is the speed of technology development.
It means that trying to perfect a standard may take longer than the life of the current technology.

The ITU-R Recommendation BT.709 forms the basis of many default color standards. Within the international
organization ITU, ITU-R is responsible for the coordination for the efficient use of the radio spectrum and of
the geostationary satellite orbit.> Within this function, it makes recommendations for television broadcasting
systems. The basic colorimetric parameters of Recommendation BT.709 for the HDTV standard are as follows.

¢ The chromaticity coordinates (x,y) of the primaries are:
red: {0.640,0.330), green: (0.300, 0.600), blue: (0.150, 0.060).

¢ The white point is Dgs, (x,y) = (0.3127, 0.3290).
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s The overall opto-electronic transfer characteristics at source are:
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for 0.0 <Y <« 0.018

where Y is the relative luminance of the scene and V is the corresponding electrical signal.

If we assume that the video signal is displayed on a CRT monitor with a gamma of 2.22 and a viewing flare of
0.1% of the reference white, then the tone reproduction curve for the HDTV images can be derived. The result
is shown in Fig. 5. From the figure, it is obvious that the curve has a slope much higher than one, as required
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Figure 5. The tone reproduction curve used in the HDTV luminance channel as specified by the international
standard (ITU-R BT.709).

by the Bartleson-Breneman’s brightness model.*647 However, if the viewing flare is more than 0.1%, the actual
tone reproduction will not have good contrast in the shadow areas.

Recently, sRGB*® has become a popular default standard color space, which is based on the same primaries
and white point as specified in ITU-R BT.709. Since a typical viewing environment of computer monitors is not in
a dark surround as was implied by ITU-R BT.709, the sSRGB standard changes the reference viewing environment
to a dim surround. The sRGB reference viewing environment is assumed to have a 1% veiling flare, an ambient
illuminance level of 64 lux with a D3y ambient illuminant, and a proximal field about 20% of the reflectance of
the reference display luminance level, which is at 80 cd/m?2. These conditions are specified to facilitate the use of
color appearance models (such as CIECAM97) for converting one viewing environment to another.

4.2. Visual Characterization

The characteristics of imaging devices change with time. Some devices (such as monitors) allow users to adjust
their settings. Therefore, a printer or a monitor might have been well calibrated in the factory, but over its life
time, it cannot consistently reproduce colors well without repeated calibration. Use of ICC device profiles or
default color spaces cannot solve this type of problem. What is needed for home users is a convenient way to
characterize imaging devices. The best solution is for each device to have a built-in internal self-calibration. The
next best solution is to have very inexpensive portable instruments to go with an easy-to-use software tool. Since
these two solutions tend to increase the cost of the products, a good alternative solution is to use the user’s own
eyes as an instrument. Test targets can be displayed or printed with well designed patterns. The user can tell the
device driver which pattern is best according to the instructed criteria. The driver then uses the user input to
select the current, best calibration table for the device. Several such visual characterization methods have been
proposed for printers?®-51 and color monitors.52:50,53




There are several perceptual phenomena that can be exploited for the visual characterization of displays and
printers. The most frequently used one is visual blur. For example, halftone printing using black dots on white
paper can generate an image with fine gray scale shadings indistinguishable from a continuous tone image, if the
size of the dot is so small as to be blurred together by the optics of our eyes. The following example shows how
visual blur can be used to determine the gamma of a CRT monitor.

The basic idea is to model the input-output characteristics of a CRT monitor by a simple equation with a few
parameters, and use visual inspection to select the parameter values by choosing the targets that have the right
appearances. For example, the luminance as a function of the input digital value of a CRT can be modeled34%°
as:

L=(5-46) 3)

where L is the relative luminance, S is the input digital value, § is the offset, and + is the gamma of the channel
being considered. Equation (3) does not take external flare into account, and thus is valid only in a completely
darkened room. To simplify the example, we will assume that the offset § has been determined by some other
means. We can generate a pattern target that will allow us to determine the correct v value when it is viewed
from a distance. Figure 6 shows a magnified view of the target used for this process. A disk is partitioned into two

Figure 6. The disk pattern for estimating the CRT gamma.

halves along a 45-degree line. The upper left half is uniformly filled with a single digital value S. The lower right
half is filled with alternating dark lines and bright lines. The dark lines have a digital value, S, and the bright
lines, S5. If the user is sufficiently far away from the the CRT screen, the dark lines and the bright lines appear
to blend together, by the optical blur in the user’s eye, to give a shade of gray that is the average luminance of
the dark and the bright lines. Two considerations are important for the design of this pattern: (1) The 45 degree
boundary is used because our visual system is less sensitive to the oblique direction and therefore can fuse the
two sides better when they are of equal luminance. (2) The alternate dark and bright lines, instead of a checker
board pattern of dark and bright pixels, are used because most CRTs cannot display on-off patterns fast enough
to produce faithful dark and bright pixels.

Given the offset and the gamma, we can calculate the signal value S on the left half that will match the
luminance on the right half:

L1 = (Sl - 5)7 (4)

Ly (8> —6)7 (5)
L = (§-9) (6)

131



and
L = 3(i+Dn) 0
(S—8) = 3[(Si -7 +(S: - o)) @®)

Therefore,
§= (5181~ 6)7 + (2= N7 +5 o)

To estimate the gamma, we display a series of disks, such as shown in Figure 7, each of which has the same right
half with alternating dark and bright lines. The left half is filled with a digital value calculated to match the

Figure 7. A series of disks for estimating the CRT gamma.

right half, assuming that the CRT has a certain v value. For example, the first disk is generated with v = 1.5,
the second with v = 1.6, the third with v = 1.7, and so on. If the CRT has a « value of 2.1, then the disk that
was generated with v = 2.1 will look like a uniform disk with both halves appear to have the same luminance.
The user’s task is to choose, from the array of disks, the one that seems to have the best match of luminances
between the left half and the right half. The chosen disk provides the estimate of the CRT +, i.e., ¥ = the gamma
value used to generate the selected disk.

A very interesting method conceived by R. L. Gregory for determining the relative “brightness” of different
colors is described on page 398 of the book by Kaiser and Boynton.’® Let a monitor displaying a set of stripes
of color A moving to one direction and a set of stripes of color B moving to the opposite direction. Movement
is perceived in the direction of the brighter stripes. When both colors are of nearly equal brightness, no drift
motion is perceived. Therefore, in principle, it is possible to use this effect to estimate the relative brightness of
the red, green, and blue phosphors of a color monitor.

There are many other visual phenomena that are well known in vision research, but have not been well exploited
in visual calibration tools. It seems that future research along this direction may produce some solutions to one
of the most troublesome problems in Internet color imaging. However, certain visual phenomena are not very
sensitive to the variable that we wish to measure. Therefore, search for a robust phenomenon to use is not easy.

5. VIEWING CONDITIONS OF UNKNOWN PERCEPTUAL EFFECTS

The environment in which we view an image has very significant effects on our image perception.*6:3:57 There are
three major factors to be considered: (1) visual adaptation, (2) surround effect, and (3) viewing flare. Although
color appearance models®” are developed to predict the effects of such factors, they tend to have many parameters
that are not easy to adjust for an arbitrary viewing environment. The best solution for this problem is to set up
our viewing environment to one of the standard conditions. However, this is not practical in many applications. In
terms of what a user can do, reducing flare by turning or shielding the room illumination away from the monitor
or viewing a reflection print from an off-specular angle under a directional light source are common sense actions
to take.

If we are producing color images that will be viewed under viewing conditions of unknown perceptual effects,
the best strategy is to control the dynamic range of the images by spatial processing®® %4 so that details in both




the highlight and the shadow are preserved with good contrast within a compressed luminance dynamic range.
Colors need to be made more saturated and white (or gray) borders or backgrounds can be used to help control
the chromatic adaptation of the viewer.

6. DISCUSSION AND CONCLUSIONS

Standardization across all imaging devices is the main solution to the problems of Internet color imaging. However,
standardization does not solve all the problems. The three remaining problems, as discussed in this paper,
are quite different in nature and require different types of solution. To deal with color images of unknown
calibration, research in computer vision, image understanding, and scene physics will eventually allow us to
implement automatic algorithms to handle the problem. To deal with imaging devices of unknown characteristics,
inexpensive colorimeters and easy-to-use software calibration tools will be the most feasible solutions in the
near future. To deal with viewing conditions of unknown perceptual effects, users can take simple measures to
greatly improve their image perception. The alternative solution is to build display devices that can sense the
environments and self-adjust their own tone and color reproduction characteristics.
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