
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO 11191
TITLE: Interference Analysis of Software Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: The Annual AIAA/BMDO Technology Conference [10th] Held in
Williamsburg, Virginia on July 23-26, 2001. Volume 1. Unclassified
Proceedings

To order the complete compilation report, use: ADB273195

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO11183 thru ADPO11193 ADP204784 thru ADP204818

UNCLASSIFIED

UNCLASSIFIED

INTERFERENCE ANALYSIS OF SOFTWARE SYSTEMS

James 0. Wilder

The Boeing Company
Space and Communications Division

Colorado Springs, CO 80910

Abstract

This paper describes a method for anticipating the derived relating the strength and execution
occurrence of software faults in terms of a theory probability distributions. The paper concludes with
of dynamic strength whose functional a discussion of the effects that may occur in their
representation has identical properties with the region of intersection, and the possibility of
reliability function. Standard software complexity utilizing design safety factors.
metrics are assessed to produce a probability
distribution representing static complexity, with Software Metrics
size as the variate, which is transformed into a
complementary static strength distribution. The Software metrics can be broadly categorized as
executing software system is also represented as either static design attribute metrics or dynamic
a probability distribution in terms of size. With the execution performance metrics.
strength and execution distributions expressed in
terms of the same variate, analysis of the Static design attribute metrics:
interference region of the distributions is * Software complexity - using McCabe
performed to derive an expression for dynamic Tools
system strength. A prerequisite to the interference * Software size - the number of SLOCS
analysis is to properly characterize the strength (defined as the number of non-commented
distribution at various execution levels. This is semi-colons) that comprise the delivered
accomplished by using another distribution called SW products
the return period, which is the average period of * Cyclometric complexity - a measure of
time between initializing the execution of a system decision points
and the occurrence of a failure. e Essential complexity - a measure of un-

structuredness
Introduction e Number of modules that exceed the

cyclometric and essential complexity
Real-time, reactive software systems interact with thresholds
and respond to external stimuli during execution.
These embedded software systems rely upon test Dynamic performance attribute metrics:
and metrics as early indicators of reliability; yet 9 Resource Utilization -for nominal,
these approaches can be counterproductive when stressing, and steady state scenarios
considered in isolation. An integrated approach against the baselined hardware architecture
that considers the relationships between external for the build (CPUs - quantity, speed, and
stimuli and measurable software complexity physical memory)
attributes could provide higher quality software 9 Memory Utilization - defined as the ratio of
than relying solely upon development process system memory used by the process (a.k.a.
controls and limited test case behavior results. resident set size) to the physical memory on
This paper introduces the concept of using the machine
probability distributions derived from the metrics * Computer Disk Utilization - defined as the
and validated by testing to characterize the amount of disk storage consumed by the
behavior of the software in terms of its strength process over time expressed as an absolute
and its execution environment. An expression is value

7-92
Approved for public release;
distribution is unlimited. UNCLASSIFIED

UNCLASSIFED

* Network Utilization - defined as the Stress and Strength Interference Analysis
amount of data sent and received over the
network by the process during a given Can a meaningful assessment of the overall
sampling interval, expressed as a rate software system performance be made using the

combination of the static design and dynamic
Software Integration and Test performance attributes of the software? Or can a

more effective use be made of the metrics during
Large-scale software developments usually rely the development and test phases, to the point of
upon both development testing and system anticipating the probability the software will
integration and test to validate the software encounter faults or failures during execution?
functionality and assess its quality.

To address these questions, a construct will be
In development testing, the software is rigorously developed to apply the theory of stress / strength
tested beyond its design limits to determine its probability distribution interference analysis. This
operational safety margins. System integration paper posits that the requirements stress testing
and test does not typically impose stressing, data could be used to describe and validate the
design limit excursion scenarios upon the product; probability density for system software strength,
rather, the objective here is to assess the software and external element integration data could be
in its installation environment with realistic used to describe probability density for stress.
interfaces and input stimuli. The potential intersection of these independent

The objectives of development testing are: distributions has implications for software product

1) To define the subset of all possible test cases robustness.
that will have the highest probability of
detecting the most defects Statistical Distributions of Stress and Strength

2) To determine the appropriate or sufficientlevel of component testing A fundamental method of explaining failures in
reliability theory is to compare the strength of a

These objectives are met by: component with the applied stress. A failure will
1) CASE tool quality analyses and occur when the stress exceeds component

assessments of component criticality are strength. In practical applications of this theory,
used to prioritize development testing component strength and applied stress are not
activities characterized as discrete values. For example,

2) Error density statistics combined with test there is variability associated with the failure of a
coverage statistics are used to determine metal beam placed under varying loading
when sufficient levels of development conditions. The beam will fail largely as a function
testing have been achieved, of load (induced stress), but the inherent

variabilities in the material properties (strength)
The goal is to define a test program that supports may be due to the structure of the metal or
the overall software defects removal process in an environmental temperature, which can influence
effective and efficient manner, without having to the material properties. Similarly, a software
perform exhaustive, comprehensive testing, which system will fail as a function of the stimuli applied
is not practically achievable for large real-time to it, and the latent variabilities in the software
embedded software systems. modules that comprise the system (strength) may

be due to the fault exposure frequency induced byAccomplishment of this goal may involve both stestiu.

stress testing and external element integration

testing. Stress testing - also called excursion
testing - is performed to collect data that exercises Strength and stress are therefore often
the performance of the software system at and represented as probability distributions. Failures
beyond the edge of the requirements boundary. will occur in the region of intersection of these

External element integration testing is performed stress and strength distributions, when the stress

with the sensor systems and external interfaces to exceeds the some critical or threshold strength

ensure interface and message processing value. Figure 1. illustrates this concept. The
capabilities prior to final software integration, probability of success of the system operating

under a spectrum of stressing stimuli may be

7-93

UNCLASSIFIED

UNCLASSIFIED

characterized as the probability that the stress rarely encountered, as, for example, modules only
does not exceed the strength in random invoked during exception handing conditions.
observations from both distributions. Any system of moderate complexity is likely to

have at least seven modules, any one of which
Assuming that probability distributions can be might be invoked at any time in response to
defined that characterize system stress and external inputs, such as real-time events handling.
software strength, this concept of stress / strength The statistical distribution representing a system's
probability intersection could also be employed as execution sequence will approach the normal
a technique for assessing software performance. distribution if the inputs are random.
The stress and strength distributions are
independent, as program execution depends upon 0,802

input sequences that do not alter the strength 0 6

distribution of the system. 0 14 Function #1

4.0 •012

Oullt~iWOU410J QIWYQiw 010
35 (d=6gI titiu 0.9,

2000'o -

3.0 SIi hT, ttt, t .0.7Q . 006Si u I15O 0 04 Fuinction #2

ý2500V) 25 i "0 0.6•
e a 20" arnt bN ty I t0o 0.5R

"" 00""0.4"\ 1 2 3 4 5 6 7 8 9 0
S1.50.1~

software module number
1.0

.5 0.1 Figure 2. Two operational profiles

Sic = 1330

For stress / strength interference analysis it is320 640 960 1280 1600 1M0 2240

s ,oelict necessary to describe the stress as a probability
Figure 1. Stress / strength interference distribution with some consistent dimension of size

as the variate, so we shall consider the
The mean and standard deviation of the execution probabilities for execution occurrence in terms of
profile are characterized in terms of the size module size. Various modules of the software
variate that is common with the size variate of the system are invoked for each function or set of
program strength density. Faults will likely occur functions, and therefore the "size" of the software
with some statistically observable frequency when system, in terms of SLOCS, for example, varies
the probability distribution representing software with its execution. When the probability of
execution intersects the probability distribution occurrence of each module is known for each
representing static software strength. That is, specific function (either through a priori estimation
those failures that occur due to faults in the or through event logged data), it is possible to
software will occur exclusively in the execution- develop a weighted average size for the software
strength interference region. function. When all of the potential functions the

software is designed to perform are aggregated,
The Statistical Distribution of Software Stress the total weighted average size for the system is

considered the execution profile. This size can be
The "stress" acting on the software system is its represented by the normal density function,
dynamic execution sequence in response to input designated e(x), where x represents a dimension
stimuli. This input stimuli spectrum could be of software size. The mean and variance
defined during the external element integration parameters for the density function e(x) are
test phase, when the functional capabilities of the determined by the weighted averaging. Of
software are run against external event stimuli, course, those systems that execute in a
The concept of the operational profile (see Figure deterministic manner do not necessarily approach
2) is well-known1 and is related to this concept of the normal form.
induced stress. Some modules may be required
for all modes, whereas other modules may be

7-94
UNCLASSIFIED

UNCLASSWIED

An example may help illustrate how a statistical throughout the entire program, and it is
distribution representing the stress of a software theoretically desirable to consider the execution
system may be characterized: level over a differential element of program AA.

Program execution is then written as
Mode Relative frequency A_ Size AEave

1 20 55,000 e(x)= lim AA
2 16 45,000 AA-* 0
3 14 65,0004 14 35,000 e(x) is a continuously differentiable density
5 61 75,000 function for the execution profile, with cumulative
6 2 25,000 distribution E(0) = 0 and E(xmax) = 1.6 2 25,000

7 1 85,000
The Statistical Distribution of Software Strength

A , sample average size = 52,857 Munson 2 has described the methodology of

CFn-1 , sample std. dev. = 13,285 defining the relative complexity metric, p, as a
weighted sum of the set of uncorrelated attribute

Comments: domain metrics. The software complexity metric
Mode 1 is most frequent, but not dominant, represents the results of the principal components
Narrow dispersion, A = 3.98 analysis, also known as factor analysis, of all

CY,_ modules in the software system. p represents all
Notes: raw metrics for in proportion to their contribution of

1. Ai is the cumulative size of the software system unique variation. The information represented by
executing the identified system mode. Units are in the original metrics is reduced to an associated
any dimension representing software size, such as
KSLOCs. complexity metric pj that is comprised of three

2. Relative frequency is the expected number of times orthogonal attribute domains, e.g. size, structure,
the identified system mode is invoked on a relative and control. Each module's complexity is
basis. In the system of this Table, for example, independent of the complexities of the other
mode 1 is operating 20/2 or 10 times more frequently
than mode 6. No single mode is dominant in this modules within the system.
example.

The composite complexity of the set of modules
The execution levels are the normal execution comprising the software system is the sum of
rate, expressed in size units as some multiple of individual module complexities:
source lines of code per second, El, E2, E3 En. - m
In many practical cases, these levels may be Ps j=1 Pj
identical. Each execution level has a normal
execution time tj, t2, t3,...tn, which is the normal The precision of the static complexity metric
module execution time for that module, assuming applicable to the system level will increase with
no delays or failures due to calls and returns the the number of modules when these modules are
module may invoke. The expected value of the combined to characterize the entire system as a
complete set of execution levels is represented by statistical distribution.

Eepwhere Eexp = fbe(x) * E* t dx; a and b arewa Software strength may be thought of as a
the extremes for the entire defined range of complement of software complexity; both
execution, and e(x) is the probability density dimensions include the common variate of size,
function for execution as a function of x, which is which is also common with the execution
the dimension of program size. distribution, making the strength distribution a

more tractable distribution than the complexity
As an example, if x is executable instructions, then distribution for interference analysis. This

the rate of program execution is given in KIPS statistical distribution ideally could be

(thousands of instructions per second). x might characterized by combining static design metrics

also be lines of code (LOC), and execution in astdis ed in thm reeing pa ragr this
term ofKLO / ecod. Tis verge alu of as discussed in the preceding paragraphs. This

terms of KLOC / second. This average value of distribution then must be validated by

execution is not, in general, uniformly distributed
requirements stress testing, where data is

7-95

UNCLASS1FWED

UNCLASSIFIED

collected that exercises the performance of the Let AT be the amount of execution time for
software element at and beyond the edge of the software of some composite complexity level to
requirements boundaries, encounter a latent fault, which may or may not be

manifested as a system failure. For conservatism
Assuming these modules are independent, the as well as for practical purposes, there is no
composite complexity for a system of, say >7 attempt to discriminate between harmless faults
modules forms a normal distribution that may be and those faults that may produce a system
represented by a function. As software size is one failure. The software system (either a single
of the variates that form the complexity module or set of modules) undergoing
distribution, the complexity distribution may be examination exhibits a unique execution / fault
transformed into a related function, software encounter curve. For any population of modules
strength, with size, y, as the single variate: in such a testing situation, there will be a set of

=- Ps nonintersecting execution / fault encounter curvess(y) p)P S f(-) which can be determined by assessing the spread
Aexp of ATs associated with the execution profile. The

lim Aexp-* 0 average execution / failure curve can then be fitted

The initial conditions of the strength distribution to the AT points from the test data using the least-

are S(y -> 0) --0 and S(y --oo)---0, where S(y -> squares method. Figure 3 illustrates the concept

0)1 (see dashed lines, Figure 1.) represents a of an execution I strength diagram relating these
distributions.state of maximum strength, and S(y -oo) = Scale

represents a state of minimum strength.

Determining Software Strength:
A Notional Method

Examples of the experimental determination of the
statistical distribution of material strength may be
found in 3. In an analogous manner, the strength > E5

distribution s(y) of the software system may be . E4

determined by estimating the execution time E3 ----------

intervals the software may run before E-
encountering a fault or experiencing a failure. If a E - -
series of execution time to fault encounter
examinations and tests are made on a number of
sets of software modules, each set of a specific
composite complexity, the results of these tests
may be used to statistically characterize the
effects of execution levels on the system. Higher AI

levels of execution, where more software modules
are invoked to achieve particular functions, will Figure 3. Stress strength distribution interference
likely exhibit more frequent fault encounters. Passing through each test point, execution / failure

As more empirical data becomes available, it curves parallel to the average curve are drawn.
should become possible to associate the These will make a family of execution curves.
composite static complexity with the probability These points of intersections El, E2.... represent a
(and associated confidence level) that the sample from the strength distribution at the
software system will contain one or more latent desired execution level. Data from the curves is
faults that would be manifested in software used to characterize the parameters of the
executions. It is also quite likely that software of strength distribution.
low composite complexity may not have latent
faults. The execution / failure data for a software system

executing a particular function are directly related
to the composite complexity of the software

7-96

UNCLASSIFIED

UNCLASSIFIED

modules invoked in performing that function. With The corresponding probability the level is greater
sufficient data, it will be possible to describe than Y, is 1 - r (x), which is a region where the
execution / fault encounter behavior as a function complexity level is high enough that statistically
of composite complexity values for the software one or more latent failure producing faults can be
involved in the execution. expected to be found in the software.

Dynamic Software Strength In differential form, the joint density function for
execution and strength is

Composite strength is inversely related both to
composite system complexity and the number of e(x)s(y)dxdy (2)
modules (the size of the system) the system
invokes in response to input stimuli. If a graph is System dynamic strength, designated Ds, is the
plotted such that program strength is the ordinate expected value of the strength probability function
and software size (cumulative source instructions) under the system's execution profile. (D, has
is the abscissa, then the graph will show program properties identical to the reliability function. The
strength decreasing up to some limit, past with the expected value of (D (x) operating under the
strength has no meaning. Past such a limit it is execution profile density e(x) is:
nearly certain faults will be encountered during
execution. Ideally the system should be designed DS (Y) = ') e(Xc f_ "x)=xc s(y) dy]dx (3)
such that its strength distribution does not overlap [f(
the intended execution normal distribution.
However, when the execution function is known to The limits cx and wo represent the minimum and
intersect the strength function, a region of maximum for the defined range of the execution
interference of the two distributions is created, as density function.
depicted in Figure 1. The intersection of these
curves is the point of criticality, yc past which the This equation, conceptually illustrated in Figure 1,
strength distribution is below the execution represents the expected value of the strength
distribution. Failures will occur when y > yc for function up to a critical level when operating under
both execution and strength in the region of the execution distribution. This is a general
interference, relationship between the execution profile

distribution and the strength distribution for the

The probability, designated c1(x), that the system under analysis, and is independent of the

execution level is not greater than a critical level y types of the distributions.

is written as:
4 (x) = .0xc s(y)dy (1) The Statistical Distribution of the Critical Value

where the variable x is the same scale of software As stated in the introduction, both the cyclomatic
size as y, and is used to differentiate the variables and essential complexity are static design attribute
in the limit and the integrand. metrics which have associated critical or threshold

.. re.g.hde=iy values. However, at the element level, when
combinations of modules are executing, the critical

. Regro ofstrenglh size value is not a discrete value under dynamic
"Staditicns, prdema disri nto describethed

tconditions, and may be randomly distributed.
distribution of the critical size value: the return
period4 . The return period is the average timeReqpon of 9ooential

fault or interval for the system to exceed the value of xc.
Mathematically, the return period is expressed as:

.........T(x) = AT / 1 - D (x)

The return period, determined from the
Figure 4. Strength distribution experimental procedure described previously, is a

7-97

UNCLASSIFIED

UNCLASSIFIED

Rayleigh distribution that characterizes the software code, as determined by the execution
instantaneous peak values of a Gaussian process profile, is of insufficient strength due to complexity
executing at a constant frequency. (See Figure 5, levels that exceed the threshold for fault-free
Normal execution with Rayleigh distributed peak execution.
values.) The system is successful so long as all
the peaks are below the critical size level. If the distributions are normal, the average and

YC standard deviation of the difference distribution are

ýtdiff = e - +(ts

'2 +2Cydiff-ý e a

"where ji and a represent average and standard
------------------- ~ deviation and subscripts e and s denote execution

and strength. The probability of failure is

Z =df / O diff

ST----T--i where Z is the standardized normal variate that
A 1 l 2 & 2 a 5 a Zltt' 9 L1 10-. provides the probability that the difference is less

executeon time than zero, a failure state.

Figure 5. Software exceeding critical strength level Safety factors could be employed to develop
The software, executing at a constant frequency about a mean software that is less subject to failure during
value, lt, encounters modules which exceed the critical strength periods of high execution, or when failures arelevel according tona Rayleigh distribution. eid fhg xcto ,o hnfiue r

least tolerable in real-time applications. Safety

Discussion factors may be designed to specify an execution
level at some number of standard deviations of

The construct developed herein can be extended e(x) above the mean execution, pg. The safety
to apply safety factors in the design process, and factor can be utilized as a verification tool, after
to utilize the return period as the upper limit of the the system has been tested; early in the software
integral for f(x) in equation (3). These extensions design phase, both the form and the standard
are discussed briefly below, deviation of the strength and execution

distributions can be assumed until empirical
Safety Factors evidence provides realistic parameters.

In the joint density function for execution and The Return Period
strength (equation (2)), the case where the
execution level exceeds the strength is x - y, Analysis of the region of interference of these
represented by the new variate z, where z = x - y. distributions can be performed when the strength
Through a transformation of the variate, the joint distribution is defined in terms of its fault or failure
density is encounter behavior at various execution levels.

This is done experimentally by the return period,
e(x)s(x - z)dxdz, which is the average period of time between

initializing the execution of a system and the
and the density function of z, g(z), is expressed as occurrence of a fault or failure. The return period

itself can be expressed as a statistical function if

g(z)dz= f O%(x)s(x-z) dx dz. empirical data is available to establish the
cx behavior of return periods for a number of

software systems. The relationship between
With the strength distribution appropriately execution levels and strength distributions may be
characterized, the failure potential is the described by using the return period as the upper
probability that a randomly activated set of limit of the integral of the strength distribution.

7-98

UNCLASSIFIED

UNCLASSIFIED

Summary

The relative complexity metric represents the
static complexity with a single numerical value.
Each module in a software system is of a discrete
size, measured in lines of code or any other
appropriate, consistently applied dimension of
size, and has an associated relative software
complexity metric. The underlying distribution of
relative complexity metrics for the system of
modules approaches the normal form as more
modules are considered. By means of a
transformation of the variate, this distribution is
redefined as a strength distribution (composite
static strength) for the software system. A second
distribution that may be characterized in terms of
size is the execution profile. The strength of a
software system is a function of its execution
profile and composite static strength.

Software metrics are often presently utilized to a
limited extent in software development and test.
Systematically estimating and deriving the metrics
through the development and test processes could
serve both to validate the metrics and to quantify
the reliability and operational margins of the
software product.

References

1 J.D. Musa, Operational Profiles in Software-

Reliability Engineering, IEEE Software, March
1993, pp. 14-32.
2 j. C. Munson, The Use of Software Metrics in
Software Reliability Modeling, Conference on
Software Reliability and Safety for the '90s, Nov.
1993
3 Kapur, K.C. and Lamberson, L.R. , Reliability In
Engineering Design, New York: John
Wiley and Sons, Inc., 1977
4 Gumbel, E.J., Statistics of Extremes, Columbia
University Press, New York, 1958, pp.21-26

7-99

UNCLASSIFIED

