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Abstract using active combustion instability control on a gas turbine
engine is to keep pressure oscillations at an acceptable level

We present results of experiment with two distinct over a large range of operating conditions.
extremum-seeking adaptive algorithms for control of corn- Experiments and model-based analysis determined that
bustion instability suitable for reduction of acoustic pressure pressure measurement and a simple phase-shifting algorithm
oscillations in gas turbine over large range of operating con- with an appropriately chosen control phase is sufficient for
ditions. The algorithms consists of a frequency tracking Ex- suppression of oscillations, given enough control authority
tended Kalman Filter to determine the in-phase component, ([11, 7, 14, 6, 8, 3, 4]). Model based analysis determined that
the quadrature component, and the magnitude of the acous- minimum information needed to calculate the best control
tic mode of interest, and a phase shifting controller with phase requires estimation of parameters, including transport
the controller phase tuned using an extremum-seeking algo- delay (or at least the corresponding phase shift), that are
rithms. The algorithms are also applicable for control of hard to obtain from pressure measurements alone [8, 3, 4].
oscillations of systems whose oscillation frequency and op- Even if this difficulty could be circumvented, the sensitivity
timal control phase shift depends on operating conditions, to modeling errors was likely to be high.
and which are driven by strong broad-band disturbance. The Need for developing an algorithm that would allow finding
algorithms have been tested in combustion experiments in- the best phase with minimum amount of a priori information
volving full-scale engine hardware and during simulated fast that would work over large range of operating conditions and
engine transients. with minimum model assumptions seemed apparent. The

operating conditions include fast engine acceleration and de-

1 Introduction celeration transients.
An experiment with active control of pressure oscillations

Emphasis on reducing the levels of pollutants created by in an industrial combustor has been conducted on 179MW
industrial gas turbine combustors has led to the develop- and 230MW gas turbines by Siemens [16]. The pilot fuel has
ment of lean, premixed combustor designs, as premixing been modulated using a phase-shifting mechanism. The best
large amounts of air with the fuel prior to its injection in- control algorithm parameters were found manually at each
to the combustor greatly reduces peak temperatures within operating condition. However, problems developed when the
the combustor and leads to lower NOx emissions. However, conditions were changing suddenly. Here is a quote from the
premixed combustors are often susceptible to thermoacous- paper by Siemens engineers and they coworkers describing
tic combustion instabilities, which can lead to large pressure experiments with Active Instability Control on 170MW en-
oscillations in the combustor. These pressure oscillations re- gine:
sult in increased noise and decreased durability. The goal of "Further investigations of the effects of AIC showed de-
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pendence of the required control parameters (gain and phase and a large delay followed by a saturated nonlinear function
shift) on the operating conditions of the gas turbine (e.g., representing the heat release process [15] [13]. If the phase
power level, pilot gas fraction). AIC operating parameters shift due to the heat release delay provides a positive feed-
wich result in a clear reduction of oscillations for certain gas back, then the damping of the system will be reduced and
turbine operating conditions can cause a significant loss in possibly achieve a negative value. In the latter case the sys-
performance of the control system during other gas turbine tem dynamics can settle on a limit cycle. One cari easily
operating conditions. In the worst case, the heat release rate show that phase-shifting control is an effective way of reduc-
modulation induced by the controller can be in phase with ing the magnitude of the limit cycle. The phase shift can
the one resulting from the self-excitation, which results in be implemented in many ways, including introducing a delay
a positive feedback and further amplification of the unde- in control, using phase lead or lag, using LQG control, and
sired oscillations. Therefore, the control parameters must be self-tuned LMS algorithms. For our purpose phase-shifting
adjusted to the operating conditions quickly. Since the con- using an observer was selected. The observer-based phase
trol parameters were set manually, difficulties arose when the shifting control has several advantages: it is conceptually
operating conditions were subject to sudden changes. There- simple and its digital implementation requires less CPU time
fore, an adaptive control algorithm is being developed, which and offers better phase resolution that the delay algorithm.
seeks the optimum settings for gain and phase shift." [16]. However, the most important feature of the observer based

The lack of a control algorithm that would allow for the phase-shifting controller is its suitability for tuning. First-
search of control parameters automatically and would not ly, the controller phase-shift is directly available for tuning.
magnify the pressure oscillations in the process of tuning was Secondly, an estimate of the magnitude of the pressure oscil-
perceived by Siemens engineers to be the major obstacle in lations is readily available from the observer states. Hence,
implementing Active Instability Control to suppress pressure an extremum-seeking algorithm to tune the controller phase
oscillation on an industrial gas turbine, to reduce pressure magnitude can be implemented.

The algorithm presented in this paper allows fast auto- There was a technical challenge in finding an adaptive
matic tuning of control parameters and (under reasonable observer that works for pressure oscillations varying over
assumptions) can be guaranteed not to amplify the oscilla- large frequency range and reliable pressure magnitude de-
tions. Two extremum-seeking algorithms [17] were selected tection mechanism. This challenge has been overcome with
for tuning of the control phase. There was a technical chal- a frequency tracking observer algorithm based on Extended
lenge in finding a phase shifting mechanism that works for Kalman Filter described in [12] that allows for fast and reli-
pressure oscillations varying over large frequency range and able estimation of the in-phase and quadrature components
reliable pressure magnitude detection mechanism. This chal- of the bulk pressure mode over large range of frequencies.
lenge has been overcome with a frequency tracking observer An extremum-seeking algorithm has been selected for tun-
algorithm (based on Extended Kalman Filter described in ing of the control phase. One of the reasons for choosing
[12]) that allows for fast and reliable estimation of the in- extremum-seeking for tuning the phase is that it is possible
phase and quadrature components of the bulk pressure mode to guarantee convergence of the control parameters to the
over large range of frequencies. optimal value and stability of the overall system [9, 101.

Performance specifications for extremum-seeking algo- Figure 1 shows the structure of the control algorithm. The
rithms have been defined for algorithm initialization tran- control gain was fixed and only the control phase has been
sients and engine acceleration transients. When initialized updated. Two distinct extremum-seeking algorithms were
with a phase corresponding to amplification of oscillations, used. The first one described in more details in this pa-
the algorithms should quickly produce and maintain phases per relied on estimation of derivative of the pressure magni-
corresponding to suppression of the oscillations. In the en- tude with respect to control phase by introducing a smal-
gine acceleration transients the algorithms should be able to 1 sinusoidal variation in the control phase and measuring
suppress oscillations relative to uncontrolled levels, the response of the pressure magnitude at the correspond-

The algorithms were tested on a single nozzle combustion ing frequency. The mean control phase was incremented by
rig at United Technologies Reserach Center in August 1998. amount proportional to the estimated derivative. This al-
More details on frequency tracking and classical extremum- gorithm will be referred to as a classical extremum-secking
seeking algortithm are included in [5]. The paper [181 pro- algorithm. The other algorithm, described in [18], called the
vides more details on the triangular search extremum-seeking triangular search algorithm, used three past sampled average
algorithm. magnitude values to determine the new control phase. The

idea behind this algorithm was to first find an interval that
contains the extremum of a function and reduce the size of

2 Adaptive algorithm description this interval at an exponential rate.

2.1 Control architecture 2.2 Frequency Tfracking Observer Design
The model analysis indicates that the combustion process

can be modeled by a feedback interconnection of a second Observer based phase-shifting control algorithm that can
order lightly damped system representing an acoustic mode, work during engine acceleration and deceleration transients
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from the measurement

y(k) = h(x(k)) + v2 (k). (6)

Control algorithm destcrption vi (k), v 2 (k) are assumed to be Gaussian, independent, white

noise signals, with zero means, and covariance matrices Q,
V%% -1 R, respectively.

S......dThe Extended Kalman Filter (to be sometimes abbreviat-
ed to EKF) uses the measurement y(k) to update the esti-
mate of the state. The filter state is denoted •(k) and the
state estimate error covariance matrix is denoted P, (k). The
filter states are initialized at zero except for the frequency
estimate.

Extended Kalman Filter update equations are:

given: previous filter state 1(k - 1), state estimate er-
ror covariance matrix P,(k - 1), measured signal y(k).

1. K(k) = P8 (k - 1)H(k - 1)' * (H(k - 1)P8 (k -
.... . . .1)H(k - 1)' + R)- 1 calculate update gain

2. yd(k) y(k) - h(i(k - 1)) filter output prediction
error

Figure 1: Adaptive algorithm for control of harmonic oscil-
lations 3. x,(k) = i(k - 1) + K(k)yd(k) state estimate using

prediction error

requires a frequency tracking algorithm. A generalized ver-
sion of a frequency tracking algorithm based on an Extended 4. H(k) = ,°X at x = i(k - 1) linearization of out-

Kalman Filter studied in [12] has been implemented. Below put function

we describe a digital version of the algorithm.
Consider a problem of estimation of in-phase and quadra- 5. F(k) = at = xm(k) linearization of vector

ture components of a sinusoidal signal y(t) = M sin(27rft) field f

with unknown frequency f, sampled at sample time T, from
a noisy measurement. Th idea used in [12] was to represent
the measurements y(k) = M sin(27rfkT.) as the output of a error covariance update

nonlinear discrete-time system with the unknown constant
frequency being one of the states.

x,(k + 1) = cos(w(k))x,(k) - sin(w(k))x,(k) (1) 8. P.(k) = F(k)Pm(k)F(k)' + Q state estimate error

x,(k+1) = sin(w(k))x,(k)+cos(w(k))x,(k) (2) covariance prediction

w(k+1) = w(k). (3) We assume R = 1 and Q = diag(q 1,...,qn). The

choice of weights qj is the main tuning mechanism for the
The corresponding output equation is EKF. While they were introduced in the formulation of the

filtering problem was as the variances to the state noise
y(k) = x.(k). (4) terms they can be thought of as tuning knobs for the filter.

A modified and extended version of the algorithm from
Given measurements y(k) = M sin(27rfkT8 ), under certain [12] has been implemented in a digital control system on a D-
conditions one can estimate the unknown frequency f (from SP board to provide a frequency tracking and phase-shifting

the formula .f = , and the in-phase and quadrature mechanism for control of combustion instability. Several ex-
components of the signal x,(k), x,(k) using an observer. tensions of model (1-2) were implemented. The most com-

We constructed an estimator for the nonlinear model (1)- plex one has 8 states and involves modeling of first two har-
(3) using an Extended Kalman Filter, i.e., a Kalman Filter monics of the bulk pressure mode, its unknown frequency,
designed for the linearization of the model about the current DC (low frequency) component, and longitudinal acoustic
estimate (see [1]). In general, an Extended Kalman Filter (750Hz) mode component.
algorithm estimates state x(k) of the nonlinear discrete-time Figures 2 and 3 illustrate performance of the frequency
system tracking Extended Kalman Filter. An 8-second long data

x(k + 1) = f((x(k)) + vi (k) (5) record has been constructed off-line by concatenating four 2-
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second long time traces of a pressure signal obtained during Figures 4 to 9 illustrate how fast the pressure oscillations
control experiment on United Technologies Research Center frequency and magnitude can increase when the combustor
test rig. The four data points correspond to four different operating conditions change. Figure 4 alone shows increase
control phases. Figure 2 shows that the frequency estimate of frequency of pressure oscillation by 30Hz in 9 seconds.
from the EKF algorithm agrees well the one obtained with Overall, in less than 2 minutes the frequency of oscillations
a short-time PSD analysis. From Figure 3 we see that the changed from about 150Hz to around 230Hz and its mag-
EKF output traces the pressure signal very well. nitude increased by a factor of 3. Changes in the frequen-

cy and magnitude of acoustic oscillations during an engine
............ acceleration or deceleration could be even faster and more

dramatic. It is very unlikely that a robust controller could
cope with such conditions. The need for controller phase and

J gain scheduling with operating conditions is clear. Since for
the lack of models the model-based scheduling of controller
parameters is impossible, scheduling of controller parameters
using an adaptive algorithm remains the only option.

2.3 Controller phase tuning using classical
extremurn-seeking algorithm

The classic algorithm for finding control phase 6 such that the
pressure magnitude achieves a local minimum at 0* relies on

Figure 2: Erequency estimate from EKF and introducing a sinusoidal variation into the control parameter

shortime PSD 0. Namely, at time t the control parameter is given by
S.......l . . . . .. .443414 cV (t) = o, (t) + 01 sin(Wt). (7)

0m,(t) is the mean value of the control parameter that is ad-
justed using an update equation that is described later. 01 is
the control parameter variation magnitude, usually chosen to
be small. If the frequency w is small enough, the magnitude
xo(t) approximately follows the value of x0 corresponding to
the magnitude of the limit cycle corresponding to the control
phase, so that the measured magnitude is

-A(t) z g(Orm(t) + 01 sin(wt)) + v(t), (8)

where v(t) is a random component of the pressure magni-

Figure 3: Pressure signal and its reconstruction tude that models disturbances driving the combustion pro-

with EKF cess, and 9(.) is the function representing the dependence of
the magnitude of the limit cycle corresponding on the control

Figures 4 to 9 show frequency tracking with Extended phase. Assuming that 91 is small, one can approximate A(t)

Kalman Filter when the combustor in the sector rig was as dg
warming up. Figures 4 to 6 show the on-line frequency esti- A(t) - g(Om(t)) + g(0m(t))9i sin(wt) + v(t). (9)

mate from EKF and short-time PSD. The frequency of the An observer has been used to extract the components of the
bulk acoustic mode increases because the speed of sound in- magnitude estimate of A(t) at the frequency w. The observer
creases with temperature. Note that the frequency tracking has been constructed assuming that A(t) is composed of a
algorithm was tracking the maximum frequency of the bulk
pressure mode. The frequency estimate from EKF algorith- constant component and a harmonic component at the fre-
m was smoother than the one shown in the previous section quency w, i.e., the magnitude estimate A tt) is an output of
because the estimate from EKF was smoothen with an addi- a linear system with three states, one modeling the constant
tionai low-pass filter. Figures 7 to 9 show pressure signal and component, and two modeling in-phase and quadrature com-ponent of a harmonic oscillator with the frequency w. The
on-line estimates of the in-phase component of the pressure observer equations were
signal reconstructed with EKF. From comparison of FFTs
one can see the band-pass filtering properties of the EKF. L1 (t) = -wx 2 (t) + 1l(A(t) - Ao(t)) (10)
The in-phase and quadrature components of the bulk pres- -

sure mode have spectral content around 200Hz and thus the x2 (t) M = wXl (t) + 12 (A(t) - A, (t)) (11)

phase-shifted control signal would not be contaminated with fi (t) = 13 (A(t) - A((t)) (12)

other frequencies. A,(t) = x 2 (t) + X3 (t). (13)
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with the gains 11, 12 , 13 chosen so that the observer error To test the transient performance of the adaptive algorith-
dynamics is stable. (In fact, a discrete-time version of this m initialization transients have been introduced. The initial
observer was implemented). Now, assuming that the observ- control phase varied significantly from the optimal one. The
er gains are properly chosen, one can assume that after some algorithms behaved very well at higher power condition (s-
transient the observer states are approximately imall pressure oscillations and medium level of broad-band

disturbance) and reasonably well at lower power condition-

X (t) (O,(t))Oi cos(wt) (14) s (large pressure oscillations and large level of broad-band
disturbance). Once reaching a neighborhood of the optimal

X2( -- P ' g(O.(t))01 sin(wt) (15) value, the control phase usually stayed in a reasonably small
neighborhood of that value, rarely produced control phases

x3(t) - 9(m(t)) (16) corresponding to level higher than uncontrolled levels, and

Now, an estimate of d(Om(t)) can be obtained by the fol- always provided better average pressure oscillations levels
dO than uncontrolled levels.lowing demodulation of observer states:thnuctrlelvls The triangular search algorithm tracked the minimum val-

z(t) := x2(t) sin(wt) + X1 (t) cos(wt) - dg (0 (t))01. (17) ue well in a transient from higher power to lower power con-
dO dition. This was a slow transient but the frequency changed

The control parameter equation will take form by about 40Hz and the pressure magnitude and noise levels
were changing dramatically. Classical algorithm with a fixed

,,~(t) = -az(t), (18) gain did not work during the transients, as the controller gain
that was optimal at the higher power level was destabilizing

The parameters to choose are: the control parameter vari- the system at the lower power level. Gain adaptation would
ation frequency w, the observer gains 11, 12 , 13 , and the be needed for the classical algorithm to work at both pow-
update gain -a. er levels. The frequency and magnitude tracking mechanism

worked very well during the transients.
2.4 Controller phase tuning using triangu- The dependence of the mean pressure magnitude and fre-

lar search algorithm quency of the corresponding mode on the control phase has
been determined experimentally at two power conditions, so

The triangular search algorithm is a self-exciting scheme. No that the optimal control phase was known a priori. This
external probing is required to find the direction of search. information allowed to check performance of the extremum-
The purpose of the contraction coefficient is to gradually de- seeking algorithms. Initialization transients have been in-
crease the level of excitation when the control phase 0 is close troduced, where the initial control phase varied significantly
to the optimizing point. In a noise free and time invariant from the optimal one. Figures 10 to 31 show typical time
environment, this is to guarantee convergence with no resid- histories of control phase and pressure magnitude (instan-
ual error such as the case of a region of attraction. However, taneous and mean) estimate at two power conditions. The
when noise is present and the plant is time varying, the ex- open-loop and optimal levels of the pressure as well as the
citation level must be kept at a sufficiently large level for all optimal control phase are indicated by horizontal lines in the
time in order to extract the correct information about the di- corresponding plots. oscillations
rection along which to move the control input. More details The experimental results are presented in Appendix.
on the algorithm are presented in [18]. For more details on experiments we refer to [5]. In general

both phase tuning algorithms behaved very well at higher

3 Experimental Results power condition (medium noise and small pressure oscilla-
tios) and reasonably well at lower power conditions (large

In this section we present results of experiments in United noise and pressure oscillations). Once reaching a neighbor-
Technologies Research Center conducted on 4 MW Single hood of the optimal value, the control phase usually stayed
Nozzle Rig in August 1998 using full-scale engine fuel nozzle in a reasonably small neighborhood of that value, rarely pro-
at realistic operating conditions. About 10% of the net fuel duced control phases corresponding to level higher than un-
was modulated for control purposes using linear proportional controlled levels, and always provided better average pressure
valve. (For more details on the UTRC experiments see [6] oscillations levels than uncontrolled levels.
and [8]. ) It has been concluded that the major factor affecting the

Performance specifications for the adaptive algorithm have performance of the extremum-seeking schemes is the "noise"
been defined for algorithm initialization transients and en- present in the pressure magnitude. More precisely, the main
gine acceleration transients. When initialized with a phase trouble with implementation of extremum-seeking algorithm
corresponding to amplification of oscillations, the algorithms is that the pressure oscillations do not have a consistent in-
should quickly produce and maintain phases corresponding stantaneous magnitude. In fact, the magnitude varies wildly.
to suppression of the oscillations. During the engine accel- However, changing the control phase affects the mean value
eration transients the algorithms should be able to suppress of the pressure and after some averaging time it is possible
oscillations relative to uncontrolled levels, to determine the mean pressure magnitude as a function of



31-6

control phase with one minimum and one maximum (modu- a simulation. However, there is need to study stability, ro-
lo 360 degrees). The fluctuating component of the pressure bustness, and performance of the algorithms using analytical
magnitude for a fixed phase is what we call noise. The noise tools. Traditional methods based on time-scale separation
can be attributed to an efect of turbulent flow in the com- are not sufficient as the time scale of of change of operating
bustor on the acoustic mode either directly, or via chemical conditions is not well separated from the time scale of the
reaction. transients in the dynamics. Preliminary analysis of perfor-

Since magnitude of the noise is a crucial factor that deter- mance limiations of extremum-seeking algorithms that does
mines performance of the tuning mechanism, it is necessary not expoits time-scale separation has been presented in [10].
to include a representative noise model in the engine dynam-
ics model, if the latter is used to study performance of the
tuning algorithms. Conclusions

We presented results of experiments with two distinct
extremum-seeking adaptive algorithms for control of com-

A nominal gas turbine engine transient from 50% to 100% bustion instability suitable for reduction of acoustic pressure
power conditions lasts a fraction of a minute. The changes oscillations in gas turbine over large range of operating con-
in operating conditions appearing during engine acceleration ditions. The algorithms consists of a frequency tracking Ex-
and deceleration are likely to resemble the transients between tended Kalman Filter to determine the in-phase component,
different power levels on the single nozzle rig. Engine tran- the quadrature component, and the magnitude of the acous-
sient lasting fraction of a minute could not be simulated tic mode of interest, and a phase shifting controller with
in experiments on the single nozzle rig. Instead, we test- the controller phase tuned using an extremum-seeking al-
ed the extremum-seeking algorithms in a simulated engine gorithms. The algorithms have been tested in combustion
30-second transient, where the measured magnitude versus experiments involving full-scale engine hardware and during
control phase functions and lower and higher power were in- simulated fast engine transients.
terpolated.
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S4 •. • •. :. .ing using classical algorithm. Ini-

•'•,••s.••:• • •tialization transient for higher

S.. .... •power. f = 1Hfz, 01 = 15,
k = 1000, 0,(0) = 170. Control

S~phase and pressure magnitude as

functions of time.

Figure 10: Classical extremum-seeking algorithm. Typical ........

initialization transient for higher power. Control phase and

show optimal and close loop levels of mean pressure magni-

tude.. 

.........

Figure 13: Controller phase tun-

0100 01,1I010 • ing using classical algorithm. [ni-

Po r mtialization 

transient for higher

opn:kooo"o boov... 
power. f = 1Hz, 01 = 15,

k = 1000, 0,(0) = -10. Control

phase and pressure magnitude 
as

functions 
of time.

Figure 11: Perfol ance of triangular extremum-seeking algo- < 00 0 OW 0

rithm during a simulated engine transients

Figure 14: Controller phase tun-

ing using classical algorithm. Ini-
tialization transient for higher

power. f = 1Hz, 01 = 15, k =

1000, 0,•(0) = 60. Control phase
and pressure magnitude as func-

tions of time.
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Figure 15: Controller phase tun- Figure 18: Controller phase tun-
ing using classical algorithm. Ini- ing using classical algorithm. Ini-
tialization transient for higher tialization transient for lower
power. f = 1Hz, 01 = 15, power. f = 1Hz, 01 = 15,
k = 1000 &,,(0) = 170 Pressure k = 150, O,(0) = 135 Control

magnitude as function of control phase and pressure magnitude as
phase. functions of time.

Figure 16: Controller phase tun- Figure 19: Controller phase tun-
ing using classical algorithm. Ini- ing using classical algorithm. Ini-
tialization transient for higher tialization transient for lower
power. f = 1Hz, 01 = 15, power. f = 1Hz, 01 = 15, k ý
k = 1000, 0m(0) = -10. Pressure 150, Ome(0) 45 .Control phase
magnitude as function of control and pressure magnitude as func-
phase. tions of time.
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Figure 17: Controller phase tun- Figure 20: Controller phase tun-

ing using classical algorithm Ini- ing using classical algorithm Ini-

tialization transient for higher tialization transient for lower
power. f = 11Hz, 01 15, power. f 1Hz 01 = 15, k =
k = 1000, Om(0) = 60. Pressure 150, 0.(0) = 115. Control phase

magnitude as function of control and pressure magnitude as func-
phase. tions of time.
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Figure 21: Controller phase tum- Figure 24: Controller phase tun-
ing using classical algorithm. lni- ing using triangular search algo-
tialization transient for lower rithm. Initialization transient for
power. f = 1Hz, 01 15, k higher power. 0.(0) = 170. Con-
150, 0,(0) = -135 . Pressure trol phase and pressure magni-
magnitude as function of control tude as functions of time.
phase. 9999999999999099m99.90o99999999 99499999

Figure 25: Controller phase tun-
Figure 22: Controller phase tun- ing using triangular search algo-
ing using classical algorithm. Ini- rithm. Initialization transient for
tialization transient for lower higher power. 0,,(0) = -10.
power. f1 -- 1Hz, 01 --- 15, Control phase and pressure mag-
k = 150, 0re(0) = 45. Pressure nitude as functions of time.
magnitude as, function of control +'"•++++•••++:++p h as e .° : .................. ...

- ° Figure 26: Controller phase tun-
W lpýing using triangular search algo-

Figure 23: Controller phase tun- rithm. Initialization transient for
ing using classical algorithm. Ini- higher power. 0,.(0) = 60. Con-

tialization transient for lower trol phase and pressure magni-
power. f = 1Hz, 01 = 15, tude as functions of time.
k = 150, 0,(O) = 115. Pressure
magnitude as function of control
phase2
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Figure 27: Controller phase tun-
ing using triangular search algo- __....

rithm. Initialization transient for
higher power. Om (0) =170
Pressure magnitude as function
of control phase.

Figure 30: Controller phase tun-
ing using triangular search algo-
rithm. Initialization transient for

i lower power. 0m(0) = -135.

Control phase and pressure mag-
nitude as functions of time.

Figure 28: Controller phase tun- ii;
ing using triangular search algo-

rithm. Initialization transient for
higher power. 0m(0) = -10. 4
Pressure magnitude as function L
of control phase.4

Figure 31: Controller phase tun-

4 ing using triangular search algo-
J 1 rithm. Initialization transient for

2lower power. 0m(0) = 45. Con-_ _trol phase and pressure magni-

- tude as functions of time.

Figure 29: Controller phase tun-
ing using triangular search al-
gorithm. Initialization transient
for higher power. 0,m(0) = 60.
Pressure magnitude as function
of control phase.
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Figure 32: Controller phase tun- Figure 33: Controller phase tun-
ing using triangular search algo- ing using triangular search al-
rithm. Initialization transient for gorithm. Initialization transien-
lower power. . Pressure magni- t for lower power. 0r,(O) = 45.
tude as function of control phase. Pressure magnitude as function

of control phase.

PAPER -31, A. Banaszuk

Question (F. E. C. Culick, USA)
Is there (i.e., can you give) a simple reason why your adaptive control algorithm(s)
worked better for high power than for lower power conditions?

Reply
It appears that the high power condition was characterized by a linear model and the flat
bottomed behavior of the phase-magnitude map was caused by peak-splitting (inability to
improve performance beyond a certain point). We speculate that the "notchy" shape of
the phase-magnitude function is caused by the system going in and out of a limit cycle.
The limit cycling behavior was caused by a subcritical bifurcation. This increases sensi-
tivity of the magnitude to the phase change around the minimum.
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