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University Park, Pennsylvania 16802, USA

Abstract

This paper presents the concept and design of a two-layer robust control system for suppression of combustion instabilities
over a wide range of operation. The control law synthesis based on a multiple-time-scale model of combustion dynamics.
Control actions on the fast-time scale are provided by secondary fuiel injection, realized as modulation of the primary fuel flow,
and are gain-scheduled according to the variations of mean-flow temperature and velocity on the slow-time scale. A linear
parameter varying (LPV) L2 -gain control law is formulated in the setting of differential game theory. Simulation experiments
have been conducted to evaluate the control law under wide-range operation of a generic combustor in terms of the trade-off
among: (i) fuel injection rate and pressure oscillation; (ii) transient and steady responses; and (iii) stability robustness and
performance.

0 establishment of a two-time-scale model of combustion
1. Introduction dynamics for robust control systems analysis and synthesis,

Unsteady motions in confined combustion chambers often and
result from mean-flow dependent interactions between heat 0 development of an observer-embedded robust LPV control
release and acoustic oscillations. The underlying physical law within the aforementioned two-layer architecture.
mechanisms involve a wide range of time scales that can be The paper is organized in six sections including the
broadly classified into two categories: one representing mean- introduction. Section 2 develops a two-time-scale model of
flow motions on a slow time-scale and the other representing combustion dynamics in a liquid-fueled propulsion system. The
acoustic oscillations on a fast time-scale. The disparity of time wide-range robust control law is formulated and analyzed in
scales allows for the development of a hierarchically structured Sections 3 and 4, respectively, based on the concept of
control law for regulating the various processes involved. The differential game theory. Section 5 presents the results of
overall combustor system may consist of two interacting simulation experiments for evaluating the system performance
modules: slow-time supervisory controller and fast-time flame under different control laws. The paper is summarized and
controller, as illustrated in Fig.1 [1]. The slow-time supervisory concluded in Section 6 with recommendations for future
controller in the outer loop attempts to optimize the overall research.
combustor performance and pollutant emissions based on the
measurements of quasi-steady variables, and to identify the flame 2. A Two-Time-Scale Model of Combustion Dynamics
control parameters that determine the operating points of the fast The disparate time scales involved in the various
dynamic phenomena such as pressure oscillations. The flame combustion and flow processes allows for the decomposition of
controller in the inner loop is responsible for suppression of the conservation laws into two settings governing slow-time
combustion instability and for prevention of lean blowout of the mean-flow dynamics and fast-time acoustic dynamics,
flame. When coupled with a global engine control system, such a respectively. The fast-time dynamics is parametrically dependent
two-layer strategy will lead to an energy-efficient and clean on the slow-time mean-flow variables. Using a spatial-averaging
system for propulsion and power-generation applications, procedure equivalent to modal analysis, a family of linear finite-

As part of their research on feedback control of combustion dimensional parameterized models is derived for parameter-
instabilities in various propulsion systems, Yang and co-workers dependent robust feedback control design.
established a series of control designs with distributed actuation The equations governing the dynamics of a liquid-fueled
[2-6]. The recent work by Hong et al. [6] was based on the H_ - combustion device with feedback control actuators can be

optimization, which guaranteed robust stability and performance succinctly expressed as [2]:

within specified bounds of model and parameter uncertainties as -P +
well as sensor noise and plant disturbance. The nominal system at g Vp + pV Vg = W + (1)
parameters, however, were treated as time-invariant constants, vg
thereby rendering the control laws valid only for narrow range of p -- + pvg .Vvg + Vp = F+ F, (2)
operating conditions. The present paper attempts to remedy this

deficiency by taking into account the temporal variations of +P+ V +v+(3)S+ Vg P+P()
mean-flow dynamics in such a unified manner that the resultant at
control laws function effectively over a wide-range of operations. where the source terms W , F, and P represent the two-phase
The work incorporates an H -based linear-parameter-varying interactions and combustion influence, and W,, F, and P, the

(LPV) control [7,8] for modulating combustion dynamics. Its total mass, momentum and energy control inputs, respectively.
major contributions beyond the previous studies on narrow-range It is apparent from experimental or computational
control [6] are observation that motions in the fluid field take place in two time-

Paper presented at the RTO A VT Symposium on "Active Control Technology for
Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles",

held in Braunschweig, Germany, 8-11 May 2000, and published in RTO MP-051.
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scales: one representing the mean-flow motion with a slower O3vg[rtf(t),ts(t)] avg dt. ,vg dtf -(vg "

time-scale and larger amplitude-order, and the other representing - d 3 d dt +g (5)
acoustic motion with fast time-scale and smaller amplitude-order. dt ats dt af dt dts dt"
Now, the purpose is to decompose each single conservation law, Equation (5) implies the fluid variables p, Vg and p can be
described in Eqs. (1), (2) and (3), into two time scales describing linearly expanded as, say:
the slow behavior of mean-flow motions and primary combustion p(r, t) = ý(r, t, ) + p'(r, t ) (6)
inputs, and fast behavior of acoustic oscillations and secondary-
fuel injection into the combustion chamber. The components of As the slow-time variables are related to system performance, the

-g p] ifast-time variables become related to the internal stability. If
the fluid-variable vector x-[p vg in the following proper slow-time dynamics is pursued in operation of the system,
table have their own time-scales and amplitude-orders where the based on Eq. (6) and the magnitude orders indicated in the above
subscripts s and f represent the slow and fast time scales, table, those terms v9g Vp + pV Vg; pVg VVg + Vp;
respectively. T)V. vg + Vg Vp; (W, F,P); and (Wc,Fc,Pc) in Eqs. (1), (2)

Table I Two Time-scaled Motions and (3) are decomposed into two equations by Taylor series

Time scales Amplitude Orders expansion, say, as:

Mean-flow ts = est As =_ eAt pV" vg(r,ts,t f )P= "g (r,ts)+ p'(r,tf )V" g (r,ts)
motion iý(ts) + p(r, ts )V. v' (r, tf) + higherorder terns

Acoustic tf = eft Af =-c f At which follows the following general form
motionx,(t) ffAX(tyl, tA )] + afx~t )] + • (,) x'(U 8

+ higher order terms ......
In the table, the referenced time-scale and amplitude-order are vg
denoted as t and A, , respectively, and the referenced time t Finally, the term p in Eq. (2) is separated based on Eqs. (5)
here is taken as the regular time used in the physical laws. The and (6) as:

time-scale and amplitude order are described by the pair ( e,ef ), an 6?s

with e f -~o (es) where 0 °o -- Oas 0--0. P t =(/+P')(ts + + (9)

which is approximated to the first-order accuracy as:
Remark 1: When observing events in the fast-time scale, tf -vg t ,0v ~ aBv -( a0

implying that e 1 and e, >> 1. Similarly, when observing P = ESP - +E P-- + f-+ "P
a t,

events in the slow-time scale, ts - t implying that e, - 1 and By using the above first-order approximations (5), (7) and

ef <<1. (10), the conservation equations, (1), (2) and (3), are decomposed

The combustion control inputs (Wc ,Fcc are also in two time scales. Collection of those slow-time variables yields

decomposed as two components: one is the primary component Slow-time Conservation Law:
with the same (i.e., slow) time-scale and amplitude-order as those Mass
of the mean-flow motions, and the other is secondary component
with the same (i.e., fast) time-scale and amplitude-order as those es _+ ýg (tL;). V•(ts) + p(t,)V -(t,)
of acoustic oscillations. The former primarily affects the mean- -ts (11)
flow field, while the latter is a modulated component influencing = W(t ) + w (ts)
the acoustic field. Similar treatments are applied to the two-
phase interaction variables (W, FP) of the uncontrolled M n

combustion process. esP(t gt ) + P(s )Vg (t")" V~g (ts) + Vý(t,)
The universally independent variable in time-domain is the • (12)

regular time t. However, for separation of the local and global = F(ts ) + Fc (t,)
behavior, the fluid, combustion, and two-phase interaction Energy
variables are treated in the form: EegX(t) =-_ X[t f (t), t, (t)] (4) es -L+ jF(ts)V. -g (ts ) + ýg (ts).- Vý(ts)

It follows from the above equation that there are two components at, - (13)

in x(tf,ts) : x'(tf)is only a function of the fast time tf, = P(t )+P C(ts)

governed by the acoustic motion and the other i(ts) is only a And collections of fast-time variables yields

function of the slow time ts following the mean-flow motion. Fast-time Conservation Law:

The two-time scale model is generated as follows: Mass
When observing an event in two different time-scales, we ap'(t) +.+

may separate the time-derivative terms Lp ,Vg and Lp in J tf .

Eqs. (1), (2) and (3) in corresponding two time-scales in the + i(tO )V. v, (tf) + P'(t )V -g (ts) (14)

following format, say: =W'(t, ) + Wc (tf)
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Momentum The mean gas velocity ýg is first separated as the product

efp(t") + Vp'(tf) = -j•(ts)(vg (t) Vv9 (tf) of the temporal variable t. and the spatial (vector) variable r as:

S• Otf " " •g(ts,r) = vt(ts)Ov(r)
"+ v<(tf) V tg(t ) (te ) (15) T(ts,r) Tt(ts)¢T(r) (19)

""ts where the scalar-valued functions • (r) and OT(r) are non-
+ Vg(ts) V~g(ts))+ F'(tf) + F,(tf) negative at each spatial point r . The mass flow rate of gas

Energy through a combustor of cross section A(r) is given by:
ef ýP + +(t 5 )V. v'9(tf) = -Tp'(t f1 )V. vg(ts) rh(t) = A(r) Vg(ts 'r)j(ts 'r)

atf (16) implying that the mean gas density ý is inversely proportional to

-Vg(ts)-Vp,(tf)- Vg(tf)-Vý(ts)+P'(tf)+Pc(tf) A(r)ig. Here, the spatial variable r only includes the

The set of conservation equations (11) to (13) in the slow-time longitudinal direction after spatial averaging over the cross-
scale governs the mean-flow dynamics, and the set of section.
conservation equations (14) to (16) describes the mean-flow- Since the mean pressure j has been assumed to be
dependent acoustic dynamics in the fast-time scale. independent of the spatial variable r in high-pressure

Subtracting the fast-time derivative of the energy equation
(16) from the spatial derivative of the momentum equation (15) combustors, the ideal gas law dictates that T is inversely

yields: proportional to ý. This, in turn, implies that T is directly

V~p 1 a2P" ef =h+h, (17) proportionalto A(r)Vg as:
2 (ts) a2tf2 T(ts,r)= -L A(r)vg (t•s,r) (20)

, =Rrh(t)
h•. =VF• 1 (t P( (18) Using Eq. (19) in Eq. (20) yields:

a• (ts ) a3?t

where the speed of sound 27 is a local thermodynamic property Tt(tR) =-(t) ())R rh(t) (21)

given by 7---F-PT =F,/- slowly varying in an ideal gas t (r) A(r)O, (r)

Vl 5ý Is For a combustor of uniform cross-section (i.e., A(r)= A for

mixture. The function h, represents the high-frequency control all r ), the constant term A can be absorbed in the temporal part

inputs, and h contains the driving and dissipation terms that T, (t) so that Eq. (21) is modified as:
depend on the spatial and temporal properties of mean-flow A ý(t, )
temperature and velocity. Tt (ts)R t v) (t) (22)

The acoustic dynamics is mainly dependent on the mean Rdts)

properties ýg and T that determines the temporally and Ot (r) =v (r)

spatially compressible properties of the fluid medium in the Therefore, for uniform cross-section of the combustor, Eq. (19)
can be rewritten as:

combustion chamber. Locally and temporally, low T implies Vg (ts, r) = v t (ts )O(r)
reduced speed of sound and consequently the dominant natural (23)
frequencies in the combustion medium, and vice versa. The T(ts, r) = Tt (ts )O(r)
mean-flow velocity ýg represents the instantaneous and spatial where the function O(r) is normalized over the total volume

speed of the coordinate frame in which an acoustic mass element V.omb of the combustor, i.e.,
travels, providing a driving/dissipated force due to an 1 f=1

accelerated/decelerated coordinate frame. Therefore, T(r, ts) VCOM6 JJJh(r)dv = 1 (24)

and ýg (r, ts) are used as gain-scheduling parameters for control In the sequel, Eq. (23) will be used for modeling combustion

of mean-flow dependent acoustic dynamics. dynamics and control systems analysis based on the gain-
Since T (r, ts ) and g (r, ts ) are continuously varying with scheduling variables vt (ts) and T, (ts ) that are available from

respect to both temporal and spatial variables, measurements with the slow-time scale dynamics of the combustion control system.
finitely many point sensors may cause loss of relevant The scheduling variables v, and T, together are referred to as
information. Furthermore, even if distributed sensors are used to the scheduling vector:

measure the spatial distribution of T (r,t,) and g(r,ts), the V=[vt]

gain-scheduling control law is likely to be excessively time- Tt
consuming and hence unsuitable for on-line computation. To The speed of sound Z- is expressed as
synthesize a control law that is executable in real time on an
inexpensive platform, the following approximation is made for a7= at (ts )4'•7 (25)

spatial representation of the gain-scheduling variables T(r, ts) The pressure perturbation can be modally decomposed as:

and ýg (r, ts) p'(r, t ) = Xrn (t/ )V,, (r) (26)

Space-time separation of mean-flow motions n=1
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subject to specified boundary conditions along the surface of the and (o (ts) = a, (ts))k, (34)
chamber. In this coordinate frame, p' has a time-dependent where (on is the slowly varying frequency of the n th mode shape,

component r1k along the direction of the kh unit vector of an and kn is the corresponding wave number. Based on the Eqs.
orthonormal basis Vl n=1,2,... , which completely spans the space (25) and (30), approximated mode shapes are derived as:

of pressure functions. That is, the set Vn,}n1=,2,.." satisfies the O(r)V 2 qn +kn = 0 (35)

following conditions subject to the boundary conditions, where the spatially dependent

"• Orthonormality: / n,V'm )=-I nVqmdV = 65mn for all weighting function O(r) puts a smaller weight on the mode

\V' )shapes of pressure perturbation in the low-temperature region and

integers m and n, a larger weight in the high-temperature region.
The fast-time scale control command for secondary fuel

"* Completeness: ((, Vn =- (PqondV = 0 Vn, then injection is superimposed on the slow-time scale primary fuel
flow. Control actions arising from the distributed combustion of

(p = 0. secondary fuel are modeled by an ensemble of point actuators;

"* Admissibility: Vn, (r) satisfies specified boundary conditions the output of each actuator is determined by its position, the local
burning characteristics of the fuel, and the time delay from the

Vn instant of fuel injection. A detailed derivation of the actuator
where (-,.) defines the inner product. command U, in Eq. (33) is presented below [2]:

Modal analysis of acoustic pressure, Eq. (26), is performed -R-AH,
as follows. Un = - Vln(ri)ui(tf;XV) (36)C' Y

S= ffj YlmVmVndV = fffP'VndV u= bi (V) arhin [tf - ri (V)] (37)
M=1 at /

a2 n -- ,i* "VqndV where AH. is the heat of combustion per unit fuel mass and the

atf d t (27) injection rate of secondary fuel is represented by thin with spatial

: ff-•2v2p~dV - r 2hdV - -2hcdV distribution density bi, the time delay Ti associated with the ith
JJJ JJJ JJJ point actuator.

Finally, the open-loop plant model of the mean-flow
-nfffý V2dependent acoustic dynamics (in the fast-time scale) becomes

=l )mff a2(r,ts)V2tlmqlndV + Fn + Un d 2 - 1n 238

where 
dt2 + ,

F =_fffV2hdv
U = -fff'f2hcd i=1

RAH, ari~t'Tk(Vg(ts))]

In view of Eq. (27) we introduce the following integral C kJ J 0ý~.)V~k ý
relationship: Thkomlto

The formulation described above is considered as a wide-
Jjja-2 (r, t') V 2V v,,qdV = -_0)25_ Vrn, n (29) range model of combustion dynamics and provides a framework

for accommodating both the global and local behavior in the two
to approximate the mode shapes = }=,2,... and natural time-scale control systems. For both control and estimation, a

frequencies 1), }1_1,2,... corresponding to specified boundary state-space realization of the combustion dynamics represents a
family of V -parameterized models. The models that include

conditions. By completeness property of the orthonormal set uncertainties and effects of mean-flow dependence are presented

{ }=, 2,.., Eq. (29) is equivalent to the following algebraic below:

relationship: Xp = (Ap ()+ Ap(V))xp + G1 (V)v+ G2 (V)d (39)

W2 (,t3)V2V ( t)+ ,2(t )•V(r)=0 (30) y=Cxp +0

A set of ordinary differential equations is derived as an where V is the scheduling vector consisting of mean-flow
approximation of Eqs. (27) and (28) based on the space-time temperature and velocity, d is the plant disturbance and 0 is the
separation of mean-flow conditions in Eq. (23):

d217 2(Tsensor noise. The state vector is chosen as x= ( ) with

d t2 +°)2( t'))1n = F,(t" t)+ U,(t, tt,) (31) ri , and r/ - ...-, rN]T. Unsteady heat release Q' and

where acoustic pressure p' provides efjbrt and flow information in
2 ffC r mechanical systems, where their phase difference determines the-at ( )hiitrh (r) dV (32) dissipated or liberated energy. For the nominal linear model, the

U -_a 2fffO(r)hVn (r)dV ( system matrix is given as:
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S 0 temperature and velocity. In the integrated control strategy, the
A -D( fluid-combustion dynamics are transformed into a combination of

slowly varying trajectory of quasi-steady equilibrium points,• 2 2 2

with Q -diag(co 1 ,0 2'..." 0N) (40) defined by mean-flow dynamics, and the associated linearperturbations are defined by the mean-flow-dependent acoustic
The input vector v(t) associated with a set of point actuators is dynamics in the fast-time scale. While the temporal trajectory of
related to the mass injection rate of the secondary fuel, rhi, , as: mean-flow variables is tracked for global performance by the

(tslow-time controller, the fast-time controller locally suppresses
b (1 the acoustic motions with its slowly varying parameters being

V(t) b 2 (VTrhi (t - T 2 (V) - 5C2 (7)) (41) gain-scheduled by the mean-flow temperature and velocity. The
: control system of fluid-combustion dynamics is therefore

bM (V)rhn (t -rM (V) - (,M ()) designed to have a two-layer hierarchical structure. The
aforementioned mean-flow dynamics represents the open-loop

where 8Ti is the modeling error associated with the time delay of plant in the outer-layer whereas the acoustic dynamics,

the control input. Equation (41) represents the actuator dynamics parametrically dependent on the mean-flow variables, represent
from the excitation of the point actuator(s) to the actual energy the open-loop plant in the inner-layer. The temporal trajectory of
release of control fuel. Since the mean flow is slowly varying mean flow variables is tracked by manipulating the primary-fuel
compared to the motion of the secondary-fuel injector, the mean- flow in the slow-time scale, while, in the inner-layer, the acoustic
flow-dependent transfer function of actuator dynamics can be dynamics is feedback-controlled by secondary-fuel flow, that is
approximated as: realized as fast modulation of the primary-fuel flow.

(42)Figure 1 and figure 2 show a schematic view of the
14s;v-)= (-v)e-1(v)s b2(-v)e-2 v .- bM(v)eM(v) (42) hierarchical structure of the two-layer control strategy. The inner-

An additive operator Ap(v), that is dependent on the layer controller continuously receives gain-scheduled signals
mean-flow conditions, represents the effects of model and from the outer layer to update its parameters that are related to

parametric uncertainties of the plant. It can be treated as a the temporal equilibrium points defined by the mean-flow
disturbance to the plant, ws =A p (xp, to realize the energy temperature and velocity, in response to the change ofperturbation dynamics at quasi-steady equilibrium points. A

amplification from input to output through this operator. The slow-time scale mean-flow controller at the outer layer is
global behavior of the operator A is characterized by the L2 - responsible for global-performance of the combustion chamber.

gain as follows: Its design is well known in industry and is not reported in this
IAp(V) paper. The inner-layer controller processes the fast-time-scale

I <3/(V) (43) signals of pressure oscillations and slow-time-scale signals of

A physical interpretation of Eq. (43) is that individual dynamics gain-scheduled variables to modulate the primary-fuel flow. The

of the uncertainty operator A p (v) yields to the following energy modulated signal then manipulates the actuator(s) of the
combustion chamber to locally suppress perturbations along the

amplified relationship from its input xp to its output ws as: temporal trajectory of the mean-flow variables for wide-range

ST 2 T 2control of the combustion dynamics.
lw dt< I p2(-xP1Idt VTe [0, (44) 3.2 Analysis of the Robust Control Law

for zero initial conditions. To design the robust controller at the inner layer, a family of

3. Formulation and Analysis of the Wide-Range Robust V -parameterized generalized plants P(s; v) is first constructed

Control Law following the block diagram in Figure 3. It includes the V-
parameterized nominal plant, actuator dynamics, modelingThis section focuses on robust performance issues of the uncertainties and performance requirements for synthesis of a

inner-layer within the two-layer wide-range combustion control

system as an extension of the narrow-range control concept wide-range robust control law. The feedback controller I(s; v)

presented in the previous publication [9]. The acoustic dynamics is derived as a function of the gain-scheduling vector V for
at the inner layer is parametrically dependent on mean-flow controller adaptation under slowly varying operating conditions.
dynamics at the outer-layer. For robustness, the inner-layer Figure 3 shows the internal structure of the V -parameterized
controller is synthesized such that stability is guaranteed over a generalized plants. The metric of L2 -gain facilitates
wide operating range of persistently varying mean-flow variables transformation of the coupled performance-stability robustness
and the associated modeling uncertainties. For perfbrmance, the analysis problem into a stability robustness problem (Zhou et al.,
controller should have the capability for disturbance rejection and 1996). To incorporate the disturbance rejection capabilities for
meeting the requirements of acoustic energy and control energy robust performance, the control objective is related to the metric
under both steady-state and transient conditions. The role of the
controller design in this section is to simultaneously satisfy these
two objectives for persistently varying mean-flow conditions disturbance w to the objective variable z. The generic
over a wide range. disturbance w consists of disturbances induced by plant
3.1 Two-layer Control Structure uncertainties w, disturbances induced by V -parameterized

modeling errors of the time delay function w, , weighted plant
In Section 2, the fluid-combustion dynamics have been

decomposed into acoustic dynamics in the fast-time scale and disturbances Wd , and weighted sensor noise wo . The objective

mean-flow dynamics in the slow-time scale, in which the variable z consists of stability variables associated with plant
parameters of acoustic dynamics are dependent on mean-flow uncertainty z, and time-delay errors zT, and performance
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variables associated with the acoustic pressure response zp and response and steady-state response; and stability robustness and

the secondary-fuel injection z performance. The performance weights within the system
The secondry-uem inj thegen e e p t fbandwidth are included in the V-parameterized generalized
The subsystems in the generalized plant family are the plants for regulation of the secondary-fuel injection and pressure

nominal plant dynamics specified in the V -parameterized state- dynamics. Shaping filters are used to penalize the dominant
space realization, (Ap, G1, G2, C) , shaping filters associated frequency components of plant disturbances and sensor noise for

with the plant disturbances W, , sensor noise WO , performance effective rejection. The ability to suppress flow oscillations is
quantified by a positive quadratic energy-like function:

weighting functions, Wp and W,, associated with pressure H -

response and secondary-fuel injection, respectively, and the = fff P
stability weighting function W, associated with time-delay Orthonormality of the acoustic mode shapes simplifies Eq. (48)

errors. Note that the plant uncertainty Ap and phase uncertainty as:

A induced by time-delay errors are not included because H= ,r, = 1112  (49)

modeling uncertainties are represented as uncertainty-induced

disturbances, w, and wT. Two shaping filters Wd and Wo are The combustion chamber tends to become free of pressure
oscillations if H in Eq. (49) approaches zero.

incorporated to characterize the main frequency components of To achieve small steady-state amplitude and short settling
the plant disturbances and sensor noise. The performance time of pressure oscillations, a new performance variable zp is
weighting functions Wp and W, are specified for the desired introduced as:
frequency responses of acoustic motions and secondary-fuel
injection, respectively, providing the trade-off between (high- p(S) = WP (s; vTAW(s) (50)

frequency) transient and (low-frequency) steady-state responses. where the Laplace Transform of a time-dependent quantity is
Those subsystems are derived as analytic functions of the gain- denoted by "'; and the weighting function Wp (s, v) is defined
scheduling variable V to serve as the database of the LPV as:
controller synthesis. WpI 0 ... 0

Fast-time modulation of the primary fuel is realized as a
secondary-fuel injection. In modeling the secondary-fuel 0 Wp2
distribution, the possible parametric error of time delay 3r(v-) WP = : (51)

causes V-parameterized phase uncertainty of the closed-loop. 0 ... 0 WpN

The V-parameterized transfer function e-&(V)s is represented A procedure for selecting the performance-weighting matrix
as one member of the following set: Wp(s,v-) of pressure oscillations is outlined below:

{(1 +A,(jw;-h)W%(jw;T) VoW : IIAT(j1;7h)[ •1 (45) The Bode plot of Wpi (s), i = 1,2,--, N resembles that of an

where A,(j1o;V) accounts for the V-parameterized phase integration operator within the bandwidth around each natural

uncertainty and acts as the magnitude scaling for each component frequency (oi (V) over the range of the gain-scheduling variable
of V. The V -parameterized stability weighting function V. The shape of each Wpi (s) outside the respective bandwidth
Wj(1; V) specifies allowable joint phase-magnitude margins in is assigned to be flat. The amplitude of each Wpi (s) represents
the closed-loop system and serves as a metric of robustness.
Equation (45) is equivalent to: the extent of overshoot of the amplitude of its mode shape for

eT(V)j(O -Itrade-off between transient and steady state responses in the
-1 I WT (jw; 7)I V Vv (46) sense that a high overshoot usually leads to a short settling time.

where Jr(V) -- maxlrk (V)I V. For the second source of Thus, the resulting performance variable zp yields small steady-
k Istate amplitude and short settling time of pressure fluctuations.

modeling uncertainty, the V-parameterized plant uncertainty Note that the bandwidth of Wpi (s) could be altered by mean-
A p (s; V) acts as an internal feedback to the nominal dynamics. flow-dependent modeling uncertainties. The nominal bandwidth

It accounts for modeling inaccuracies of intrinsic coupling corresponds to the natural frequency of acoustic oscillations. To
between flow dynamics and combustion responses. The bound of determine the possible bandwidth range for all perturbed plants,

A p(s;V) is specified by its L2 gain as A p (s, V)I < 6P (v-. natural frequencies within the uncertainty bound of V need to be
calculated.

Based on the small gain theorem (Zhou et al., 1996), a sufficient The other performance requirement involves secondary-fuel
condition of robust stability of the closed-loop system is: injection. The frequency response of mass flow rate of secondary

( + T 12 }ItdJ<(I] 2 + ]2 )d1 VTE[O,o) (47) fuel has limited bandwidth and overshoot amplitude due to the
inertial effects of the fuel flow. To this end, a performance

for the zero-state initial conditions and zs being equal to weight W, (s, v ) is incorporated into the generalized plant

(5p(v-)Xp. model, and a new performance variable z, is defined as:

The inequality in Eq. (47) implies that the robust controller 2u (s) = W, (s; V)*(s) (52)

can stabilize all perturbed plants within the V -parameterized where u(s) and , (s) are the Laplace transforms of rhi (t) and
uncertainty bounds characterized by 6p(v) and r(V-) without z, (t), respectively. The V -parameterized performance
specifying any performance requirements that provide trade-off weighting W, (s, v) is chosen via the following procedure:
between the control energy and the acoustic energy; transient
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The Bode plot of WU(s) resembles that of a derivative operator Note that Eq. (56) is conservative because it ignores the structure

within the frequency range of interest. A small z, implies that of the uncertainly robust performance operator A(s;V) , which

the high-frequency component of secondary fuiel flow rate i,consists of model uncertainties and performance-induced
uncertainties. The generalized plant family P(s; v) in Eq. (57)has been filtered out. At each V, the shape of W1, outside the
can be compensated to make the requirements of robust

bandwidth is assigned to be flat. The bandwidth range is altered performance specified in Eq. (56) less conservative. Figure 4
by uncertainties in the (mean-flow-dependent) scheduling vector shows that the generalized plant family is compensated by two

V.~ V-parameterized compensators, D l(s,v-) and D(s,v-). TheThe nominal performance is specified by the relationship resu ting compensate raz pl ant represents t he

between exogenous inputs, plant disturbance d and sensor noise resulting compensated generalized plant represents the structure
A without altering the uncertainty size and performance

8, and performance variables, Zp and zu. A shaping filer Wd requirements. This is achieved by choosing the D -compensator

is included in the generalized plant such that the resulting robust as:
controller focuses on rejecting the dominated frequency D(s,v)A(s,v-)=A(s,v)D(s,v) vv (58)
components of plant disturbance. Therefore, the weighted plant This compensation approach, known as the D-K iteration
disturbance wd is used for performance specifications, instead (Packard and Doyle, 1993), can be iterated many times.

of the disturbance d itself, where 4. Synthesis of the Wide-Range Robust Control Law

W'd (S) = Wd (S) d(s) (53) The inner-layer control law is synthesized using the concept

Similar conditions are introduced in the sensor noise 0 as: of Linear Parameter Varying (LPV)- L2 -gain methodology that is

ii0 (s) = WO (s) 6(s) (54) presented in this section. The objective of the LPV- L2 -gain

where ýv0 is the weighted sensor noise and W0 is shaping the control law is to reject the effects of chamber disturbances and

sensor noise 0 . mean-flow dependent model uncertainties while optimizing the
A linear parameter varying (LPV) robust controller is specified performance. The LPV- L2 -gain controller has a H_-

designed such that the plant disturbance d and sensor noise 0 structure and is derived as a gain-scheduling process
have minimum effects on the acoustic motions and control accommodating continuous variations of the mean-flow
actions from the energy perspectives. The nominal performance conditions. The major challenge is to synthesize a family of V -
is specified by: parameterized control laws that guarantee robust performance

zf Tt) 11  under the continuously varying mean-flow conditions over a wide
q (t) + z (112 dt operating range.

(55) The LPVL 2 -gain controller consists of two main
V< wd (0 + ( dt V [O,o) components. The first component is a V -parameterized observer

that dynamically estimates the states of the V-parameterized
where q is a V -parameterized positive scalar, representing the generalized plants described by Eq. (57). The estimator structure
weighting factor of acoustic motion at each V. As q is set is not formulated as an exact plant state observer due to the
larger, then the response of acoustic motions is more emphasized presence of a calibration term w,,, (V) that protects the control
than that of control actions, and vice versa. Furthermore, system from being excessively sensitive to exogenous inputs and
increasing q implies a better rejection ability of exogenous modeling uncertainties, entering the observer state equation. The
inputs. second component is a state-feedback control gain matrix, which

Based on Eq. (47) and Eq. (55), a sufficient condition for determines the control action based on the estimated state i as
robust performance (i.e., a combination of robust stability and seen in the controller configuration of Figure 5.
nominal performance) of the control system is: The remaining task lies in the determination of the V -

T 2 T 2 parameterized observer matrix L(v), controller matrix K(v-),
fJzJJdt! • jlwwldt VTe [O,oo) Vwe L2 [O,T];

Sd<_ wand the calibrated term wcai(V) such that the sufficient

Zs ] Ws condition for robust performance in Eq. (56) holds. Usage of
parameter-dependent Lyapunov functions in the controller

with z = ;w= (56) synthesis leads to differential matrix inequalities as reported by
S- WO Hong [9]. The results are derived based on the following

zIC WIC assumptions,

If Eq. (56) holds, then the controller internally stabilizes the Assumption#l: The parameter-dependent matrices D12 and
closed-loop for all perturbed plants with desired performance, D21 are normalized as:
subject to an uncertainty bound. F•l

Following the internal structure in Fig. 3, the generalized D12 (V)= II; D2 1(V)D2T(V)=I; (59)
plant family P(s;v-) can be expressed, similar to that narrow- Li

range control in the previous publication [9] by state-space Assumption #2: D1 I is reduced to zero by loop shifting [10];
realization as: Assumption #3: D 22 is set to zero without loss of generality

x = A(v-)x + B1 (v)w+ B 2 (V)u [10];

z = C1 (v-)x + D12 (V-)U (57)

y = C2 (v-)x + D2 1(V) w
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Assumption #4: The parameter vector T(t) is a continuous e The features of the LPV L2 -gain control law in Theorem 1

function belonging to a compact subset of 9Rs and the parameter are similar to those of the existing LTI H_ control (Doyle et

variation rate v~(t) is bounded as vi(t) < /i Vi {1,2,-.-,s} al., 1989).v Unlike the LPV control law of Wu et al. (1996), the
Assumption #5: The system matrices of the generalized plant proposed LPV control is not explicitly dependent on the

family, (A,B 1 ,B 2 ,C1 ,C 2 ,D1 2 ,D 21 ), are continuous functions temporal rates of the scheduling variables. This feature is

of T; attractive from the perspectives of real-time implementation

A n#6: The control matrix K(T) and the observer because measurements of time derivatives of the scheduling
Assumtionvariables may not usually be available.

matrix L(V) are continuously differentiable functions of V;

The main results are summarized below as Theorem 1 below 5. Simulation Results and Discussion

and the detailed proof has been presented by Hong [9]. This section presents a series of parametric studies and
Theorem 1: All candidate LPV L2 -gain controllers for Y- transient simulations of a generic combustor model to validate

performance and P3 -variation are synthesized by solving the the wide-range robust control methodology. The objective is to

following two linearly coupled matrix inequalities for X(V) and investigate the relationships among system performance, stability
robustness, and plant operation based on the transient response

Z(V): and frequency spectrum of pressure oscillations under different

- T+T1 ] operation scenarios. The relationships among the uncertainty
Y114+AxX-Z- / -BB k r-1(JI-E2) B! bounds of system dynamics, the response of flow oscillations and

&i] control actions, and the allowable variation rates of mean-flow
(VI-q tfz)IX-r -1 0 <0(60) parameters are investigated and quantified.

0 -1I Table II lists the parameters of the generic combustor that
represents typical scenarios encountered in practical combustion
chambers. Table III lists the dimensionless quantities that are

where Ax =A-B 2D T2CI needed to investigate the four dominant modes of longitudinal

and acoustic oscillations under H_ Control, Gain-scheduled Control,

-Z-I and the LPV- L2 -gain Control. Table IV lists the parameters
Z-AZ+ + - -needed for modeling and simulation.

Two bandwidth-limited performances weighting functions
!-Z-1 - 0 <0 (61) Wp and W, have been fitted as continuous functions of the

0 -scheduling variables: mean-flow temperature i and velocity

Vg at each of the selected modal frequencies (01 , '",(ON . The
where Az = A+ B1 F1 -B1 DTC2  shaping filters Wd and W0 are taken as unity as the chamber

1 disturbances and sensor noise are assumed to be white. The
F 2 =-B X system robustness is represented by the bound 3p(v) of plant

modeling uncertainties. The system performance is represented

F2 =-(B2X + D12C1) by the weighting factor of pressure response q(V). The plant

The LPV L2 -gain control law in Figure 5 is derived in terms of operation is characterized by the bounds of absolute values of the

the control matrix normalized rates, TI5T and j5v , respectively, of the scheduling

K(V) =1-(Bf (V)X(V) + D1 (V)C 1 (V)), (62) variables T and 9 . Increasing I/Tr and I6v implies that the

the estimation matrix is scheduling variables can be varied faster with guaranteed robust

L(v) = Z(V)Cf (V), (63) performance. On the other hand, increasing the performance

and the calibration term is: parameters q implies a more stringent requirement of system
Wmax (i, V) = (B 1 (V) - Z(--)CT (v)D 2 1 (V))F1 (v)i (64) performance in terms of the transient oscillations of each acoustic

m2 mode and the ability to reject chamber acoustic and thermal
The resulting dynamics of the LPV robust controller becomes noise. Extensive simulation experiments have been conducted to

B1F1 + B2 F2 - T T realize the trade-off relationship among system robustness,
i =[A ZC- 2(BC+D 2 1Ffx + + )performance and operation of the control system.

X 12  The dimensionless bounds of the variation rates 10T I and
where i is the estimated state.

The differential matrix inequalities in Theorem 1 are jointly define the allowable varying rate of plant operation
discretized by a finite-element approach as a series of solvable from the perspectives of performance. Figure 6 shows the trade-
linear matrix inequalities [9]. The commercially available off between system performance and plant operation. For the
package of Matlab-LMI toolbox that numerically solves these plant uncertainty bound set at 5p = 0.03, the family of curves in
inequalities via a convex optimization procedure has been used Figure 6 serve as a constraint under which the LPV robust
for controller synthesis in this paper. controller guarantees system stability and performance in the
Remark3: Theorem 1 enhances the theory of linear parameter operating range of dimensionless scheduling variables
varying (LPV) control in the following two areas: PT e [0.6,1.4] and p, e [0.5,1.5]. The triple (10T I, 1/, 1, q )

defines the design point which is evaluated in the modeling
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process prior to the controller design. For example, with the Figure 9 shows the system response using a single H_
maximum variation of the mean-temperature rate 1PT being 0.1 controller for the entire range of PT e [0.6,1.4] and

and the maximum variation of the mean-velocity variation rate p, e [0.5,1.4] where the system response exhibits instability and
1v, 1 being 0.016, the weighting factor of system performance q hence the performance is obviously unacceptable. Note that H_
should be less than or equal to 0.09 to guarantee robust control may be suitable for narrow-range operation as discussed
performance. This is a conservative design and, in the simulation in the previous work (Hong et. al., 1999), but not for wide-range
stage, much larger q may be allowed. A larger q leads to a operation here. Figure 10 shows the system performance under
larger risk, since it implies a larger probability that the the gain-scheduled controller, which is synthesized without
combustion system may enter into a (potentially) unstable region considering the variations in the mean-flow variables T and
beyond what is specified by the plant uncertainty model. The
insufficient information of uncertainty dynamics, except its size The results show that the control system is unstable. This

specified by the induced L2 -norm, prevents precise establishes the necessity for LPV robust control.
Figures 11, 12, 13 and 14 show the responses of four modes

quantification of the region of risk. Figure 6 qualitatively reveals of acoustic oscillations in the combustion chamber under the
the sensitivity of each design point. Robust performance of the LPV robust control. The total acoustic oscillations are
closed-loop system is sensitive to the mean-velocity variation rate significantly improved since the controller exhibits the ability to
0,3 because the L2 -gain control tends to maximize the entropy reject exogenous inputs on the first two modes without degrading
of the closed-loop system. The effects of mean-velocity rate 0, the responses of high-frequency modes. This suggests that model

on the dissipation or driving force of acoustic dynamics represent reduction has not caused any significant loss of robustness under
the varying condition of the irreversible process in the acoustic the LPV control for wide-range operation. Therefore, usage of

field. Since the entropy-oriented scheme is sensitive to the LPV robust control may not require a meticulous consideration of

controlled irreversible process, the L2 -gain control system of the high-frequency excitation provided that the scheduling
variables are appropriately rate-bounded. It is also shown that

acoustic dynamics is sensitive to mean-velocity variations, the closed-loop system is asymptotically stable in the absence of
Figure 6 also suggests that the robust performance of the closed-
loop is relatively insensitive to the mean-temperature variation The embedded observer located in the LPV robust controller
rate OT because the mean temperature determines the natural is capable of estimating the internal states of acoustic dynamics
frequencies of the acoustic vibration. This phenomenon also under a wide range of continuously varying mean-flow condition
leads to the fact that the bandwidth of the open-loop system is as seen in Figures 11, 12, 13 and 14. The embedded observer
almost the same as that of the closed-loop system. In other words, provides an estimation of acoustic vibration of each mode. The
the feedback control does not change the natural frequencies of transient and steady-state errors, due to modeling uncertainties
the system. Therefore, model reduction originally performed in and exogenous inputs, are shown to be small. This implies that
the open-loop plant remains valid after the feedback control is the calibration terms in the embedded observer are able to keep
formed. Consequently, for large natural frequencies, the control the system away from the high-risk region, and yet they are small
actions would require fast actuators, enough not to significantly change the estimated states. In the

Figure 7 shows that the robust performance of the closed- absence of modeling uncertainties, the performance of the
loop system is not very sensitive to mean temperature variation observer embedded in L2 -gain controller approaches that of the
rate with 1,P 1 being set to 0.01. The results indicate that minimum variance state estimator.

robustness of the closed-loop system becomes sensitive to mean- Figure 15 shows the secondary-fuel injection in the LPV
velocity variation rate only in the region of high performance. robust control system. The fast-time modulation does not cross
Figure 7 can be used to realize a trade-off between robustness 4 % of primary fuel flow rate, while the amplitude of acoustic
5p and performance q . In the low-performance region, the pressure oscillations exceeds 10% of the mean pressure. Figure

trade-off between robustness and performance is almost linear, 16 shows the frequency spectrum of the normalized pressure

i.e., the increment of 5p is approximately proportional to the perturbations before and after the controller is brought in. The

decrement of q responses exhibit two frequency-scaled components
corresponding to two time-scaled motions.

Two plates in Figure 8 show the temporal trajectories of
mean velocity and mean temperature generated from CFD 6. Summary and Conclusions
calculation. In the simulation of the closed-loop system for the To synthesize a robust control law for wide-range
wide range of mean-flow conditions, the plant uncertainty bound operations, a two-time-scale model of combustion dynamics has
is set to be 5 = 0.03 , time delay uncertainty bound 8T = 3 / w 0 , been formulated by decomposition of the conservation laws and

thermodynamic state relations based on the slowly varying mean-
plant disturbance intensity 10 - , and sensor noise flow and fast perturbed conditions of the process variables. The

RAH, fast-time scale acoustic-flame dynamics are parametrically

dependent on the mean-flow temperature and velocity. Control
intensity 101 CO2-CVPO Simulation experiments are conducted actions on the fast-time scale are provided by secondary fuel

RAH, injection that is realized as fast modulation of the primary fuel

under three different controllers: flow. The structure of control system follows a two-layered
"* Controller #I: Single H_ control; hierarchy. In the outer-layer, mean-flow dynamics of the

"combustion process is controlled in the slow-time scale by
, Controller #2: Gain-scheduled Ha control; manipulating the primary-fuel flow, while the fast-time acoustic
"* Controller #3: LPV L 2 -gain control, controller in the inner-layer is parametrically gain-scheduled by

the mean-flow temperature and velocity from the outer-layer.
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Table II. Parameters of the Generic Combustion Chamber

Time average sound speed a, 795.8 m/s

Time average mean temperature T. 1415 K

Time average mean pressure p, 0.5 Mpa

Combustor length L 1.0 m

Combustor diameter d, 0.6 m

Specific heat ratio 7 1.2

Gas constant R 373 J/(kg.K)

Constant volume specific heat C, 1500 J/(kg.K)

(MMH) heat of combustion ( AHI) 5 x 106 J/kg

Average fundamental frequency (9o -rao L 1000 rad/s

Average mean velocity V, 300 m/s

Average mixed density ; 0.9473 kg/m 3

Table III Dimensionless Quantities

Dimensionless time t' ( 0ot

Dimensionless frequency (0' (09/ 0

Dimensionless injected rate of control-fuel u' - R-AH,
2 - U(90 Cv Po

Dimensionless damping ratio D'i D, /(0o

Dimensionless frequency shifting E ENi /0)2

Dimensionless gain-scheduling mean velocity p•, V, / Vo

Dimensionless gain-scheduling mean temperature PT Tt / TO

Dimensionless p, variation rate P5, dpi, / dt'

Dimensionless PT variation rate PT dPT / dt'

Table IV Parameters Used in Simulation and Modeling

Maximum time delay error &5," = 3 / (90

Plant uncertainty bound 3p = 0.03

Weighting factor q = 0.1

White plant disturbance intensity 11 2-

RAH,

White sensor noise intensity 2--10 - (9 o C ,P O

R AH,.

Initial conditions an impulse 0.0 1 p0 /sec.



2 8-12

"fo Manipulationo of:ae&EisinDsrbue esr

Coresror Paaetr Fue/Ai Ratio-SMain
Flo Opiizto Priar Airusio SwilrFela Cobuses

Figure* 1STo-ay r essontrol ytmf orM dl Combustion for yrnsien s
Osilaton L Vaiabe

*MAoianc-o Lanoloou

Contribller cutr

eeodt Sect-timy 
SloweLm

Ful Ajctur aenoroeso

for anbplstinibf

Figre TwoLayr ~ Figuonroyte I To -lyrCnrlSse o ouaigCombustion~yate Dy~)Z W~s namics

Figur 3ceuln Menfo aaeeted eeaie ln o obsinDnm

Mean-Flo A(s V ) G,(sV)v+G Vd+
Controlobus Observer +

Ficon ury 5 ytei F aLRbst-tm C lontrol vSystem



28-13

0.022 0.20

0.03 0.18
0.020

0.05 0.16

0.018 0.07 0.14 q=0.16 0.14 0.12 0.10 0.08

0.016 0.12

0.014 090.10

0.11 0.080.012 • _00

000q =0.13 0.06
0.010 0 0.02

0.10 0.12 0.14 0.16 0.18 0.20 0.01 0.02 0.03 0.04 0.05 0.06

IPTI A
Figure 6 Trade-off between Performance and Plant Operation Figure 7 Trade-off between Robustness and Performance

1.5. 0.4

0.2
Pv 1.0 elP'( 00

-0.2
0.5 20 30 40 50 60 70 80 -04

0 10 20 30 40 50 60 70 80

1.4 0.04

1.2- 0.02

PT 1.0 _h_ 0.00

0.8 
rhpri 0.00

-0.02-
Ok0  10 20 30 40 50 60 70 80 -0.040 40 50 60 70 80

Dimensionless Time Dimensionless Time

Figure 8 Time History of Mean Velocity and Temperature Figure 9 System Response under H_ Control0. 0.1
0.20

p'(r,) .0.10

Tr)-0.2- MW 0.05.

-0.4 - 0.004"0 10 20 30 40 50 60 70 80

-0.05

0.02-
-0.10

mpri -- 0.15 - Real

"0"0"--- -------- Estimated

-0.04 0 1-0.20
30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Dimensionless Time Dimensionless Time

Figure 10 System Response under Gain-Scheduled Control Figure 11 Time History of First-Mode of Pressure Oscillation
under LPV- L, - Gain Control



28-14

0.15 0.020

0.10- 0.015-

0.010•
0.05 - ,

J • • ~0.005 ; ,

P. 0.00 --. 000
P p

-0.05 -0.005

-0.010
-0.10

-0.015

-0.15 Real -0.020 Real
--------. Estimated ----- Estimated-0.20- -0.025 . .ed

"0.20 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 80

Dimensionless Time Dimensionless Time

Figure 12 Time History of Second-Mode of Pressure Oscillation Figure 13 Time History of Third-Mode of Pressure Oscillation
under LPV- I, - Gain Control under LPV- L - Gain Control

0.015 0.04

0.010 0.03

0.02,
000050

p0.000
r hpri 0.00-

-0.005

-0.0100
Real -0.02"

----------Estimated
.0.015 0 10 20 30 40 50 60 70 80 4-.03

0 10 20 30 40 50 60 70 80

Dimensionless Time Dimensionless Time

Figure 14 Time History of Fourth-Mode of Pressure Oscillation Figure 15 Secondary Fuel Injection Rate under LPV L. -Gain Control
under LPV- L- Gain Control

-20

Control On-1 0- -- -- -- --C o n tr o l O ff

-12C
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Normalized Frequency

Figure 16 Frequency Spectrum of Pressure with and without
LPV L2 -gain Control


