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Abstract any operating conditions. Furthermore, the STR has the advan-
tage of avoiding a system identification procedure (which is one of

Rather than investigate a particular combustor, a whole class the main difficulties in implementing a LMS controller [12]), since
of combustion systems, susceptible to damage from combustion it uses little information about the physical process. However, so
instabilities, is considered. Under some simple and realistic as- far, only a specific simple combustor has been shown to have the
sumptions (pressure waves reflected from the combustor bound- structure required for the design of a STR [2]. Moreover, the STR

aries smaller than incoming waves, flame stable in itself, limited cannot accommodate a time delay between control action and its
bandwith flame response), it is demonstrated that a finite dimen- detection.
sional approximation to the open-loop transfer function of such a Our purpose in this paper is to:
combustion system satisfies some general properties (stable zeros, (i) determine the general features of a self-excited combustion sys-
small relative degree) that are exploited to design adaptive ac- tem, rather than investigate a particular combustor in detail.

tive controllers guaranteed to stabilise the self-excited combustion (ii) exploit these features to design a novel adaptive controller
oscillations. In particular, for the practical case of a combustion that is guaranteed to stabilise the combustion system, the major
system with time delay, a completely new and simple adaptive con- challenge being to guarantee stabilisation in the presence of time

trol design is presented and a formal proof for stability is given, delay in the combustion system.

The performance of such stable adaptive controllers is illustrated Step (ii) involves first the choice of a low order fixed controller
in a simulation. structure that can stabilise the system, and second the determi-

nation of adaptive laws for the controller parameters guaranteed

1. Introduction to converge to stabilising values.

In order to meet stringent emission requirements, combustors Hence, the paper is divided as follows: in section 2, a whole
are increasingly being designed to operate in a lean premixed class of self-excited combustion systems is described, and its fea-

mode. Although this reduces the NOx emissions, it has the disad- tures used to build a controller are given. Section 3 describes

vantage that premixed flames are particularly susceptible to self- low order fixed regulator structures that can control a combustion

excited oscillations, and the associated large-scale pressure waves system with or without time delay, while section 4 deals with the

can cause structural damage. Active control provides a way of design of a Self Tuning Regulator (STR) guaranteed to stabilise a
self-excited combustion process, containing or not some time de-

extending the stable operating range of a combustion system, by

interrupting the damaging interaction between acoustic waves and lays. In section 5, the performance of the STR is illustrated on a

unsteady combustion. However, to be useful in practice, an active simulation based on a nonlinear model of a premixed ducted flame

controller needs to be effective across a range of operating con- developed by Dowling [101.

ditions. An efficient approach is to use an adaptive controller in 2. General features of self-excited combustion systems
which the controller transfer function is continually altered as the

engine condition changes. Most premixed combustors are highly resonant systems and
They axe already some algorithms that describe how to update may develop combustion instabilities for some operating condi-

the controller parameters. The most popular adaptive schemes tions. These self-excited oscillations result from an interaction
used for active control of combustion instability is the Least Mean between unsteady combustion and acoustic waves: unsteady

Squares (LMS) algorithm applied to an IIR (Infinite Impulse Re- combustion generates sound, while acoustic waves reflected from
sponse) filter [5],[17],[12],[11]. The LMS is very attractive because the boundaries perturb the combustion still further. Rather than
it does not require any theoretical model: the combustion process investigate a particular combustor in detail, we determine the
is considered as a 'black box' and is learnt during a system iden- general structure of this interaction, which will then be exploited
tification procedure, performed off-line [5] or on-line [17],[12],[11] to design fixed and adaptive controllers in sections 3 and 4

thanks to measurements. However, the major drawback is that an respectively.
LMS controller might lead to a divergence of the control scheme if,

for some operating conditions, the poles of the IIR become unsta-
ble. The features of a LMS controller have been extensively stud- 2.1 Open-loop characteristics
ied by Evesque & Dowling [12],[11], and here it was necessary to in-
troduce a parallel algorithm (based on the Laguerre's method [28]) A wide class of combustion systems, including lean premixed
to prevent a starting divergence due to the controller. Other adap- prevapourised (LPP) combustors and aeroengine afterburners,

tive schemes already developed include neural networks [6] which can be modelled as a combustion section embedded within a
is a nonlinear version of the LMS-controller, and a minimisation network of pipes, as shown in figure 1. We will investigate
scheme based on the downhill simplex algorithm [25]. All these linear low frequency perturbations to the flow in such a pipework
schemes provide no guarantee that the controller can stabilise the system. The flow at inlet to the combustor is assumed to be
self-excited combustion process. isentropic, and the frequencies of interest are low. This ensures

An efficient way to prevent any divergence of the adaptive con- that the combustion zone is short compared with the wavelength.

trol scheme is to use systematic methods for designing stable adap- Moreover, since only plane waves transport acoustic energy, it is
tive systems. The adaptive controller, called STR (Self-Tuning sufficient to consider one-dimensional disturbances. The pressure

Regulator) by Annaswamny et al [2], is designed based on a Lya- and velocity upstream the flame can therefore be written as a

punov stability analysis and is therefore guaranteed to be stable for linear combination of the waves 9 and f, and downstream the

Paper presented at the RTO A VT Symposium on "Active Control Technology for
Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles

held in Braunschweig, Germany, 8-]1 May 2000, and published in RTO MP-05].
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-xu xref 0 xd The equations of conservation of mass, momentum and energy-I II •

across the short flame zone at x = 0 can be written in a form that
1 2 is independent of downstream density and temperature [9]:

Ru ýzonon + entropy waves Rd P2 - P -+ Pl Ul (U2  Ul) = 0
-.......... " i --- + n "-- /v1 2  Q
g -pU l) + Y U,(U2 U2) )

_2-1 A

Q is the instantaneous rate of heat release, A is the combustor
Pref cross-sectional area and -y is the ratio of specific heat capacities.

measuredc Substitution from (1), (2) and (4) into (5), making use of the isen-

tropic condition pl/p7, and linearising in the flow perturbations
VC give the time evolution of the outgoing waves g and h generated

by the unsteady heat release Q(t):
-closed loop cotole

control con
control.....-- X, X 1 2  g(t) - IRYn Yr2Rd [W(t - -01

X 21  X2 2  h(t) } Y2 ,Ru YI2 Rd [h(t - rd)]
Figure 1: Open-loop self-excited combustion process with actuation

+ Q(t)-Q4F (6)

flame as a linear combination of the waves h and j: where Xij and Yij are constant coefficients depending on the

in -X. < x < 0, mean flow only, and given in appendix B.
After taking the Laplace transform t of the system (6) and us-

0 x )+ / x\ ing (1) and the boundary condition (4), one obtains the transfer
p(Z+l) = P +f t + 9 Ct -i function

1 [ (Rd ser)X XR exT)]1

u(X,t) = U + If- -- g t+ (1) (s) - -1)ZIc Zl +' Ul Cl- G(s) u 1() (s ••...X2X. .. ) (7)
Q(s) det(N)

in 0 < x < Xd, 
where

p(Xt) = 2+h t- + N Xi_- RuYlle... X 12 - RdYi2e-Srd
p Z2+%2) + (t+ E--u...+ X21 - RuY2le-"1 X 22 - RdY22 e - "

1 =U2+7' h (tj (t x ( G(s) describes the generation of unsteady velocity ul(t) at the
= 2+_2 1 Z2 + 2  Z2 ] (2) flame, due to the unsteady heat release Q(t).

plup and c are respectively the pressure, velocity, density and Since the self-excited oscillation results from a coupling between
u just unsteady heat release and acoustic waves, the forcing of unsteady

speed of sound. The suffices 1 and 2 denote flow quantities heat release due to incoming flow disturbances at the flame must
upstream and downstream of the combustion zone, and the over- be also described. In many applications, the combustion responds
bareindates u ram mand valustre. m ofthe disncestn zond e. t most strongly to velocity fluctuations. This is because in acoustic

The boundary conditions of the combustor are characterized waves the fractional change in flow velocity is order Rf-a larger
by ustram nd owntrea prssue rfletioncoeficent R. than the fractional change in pressure, ie a large factor at the

by upstream and downstream pressure reflection coefficients R,. low Mach numbers at which combustion can be sustained. This

and Rd respectively. Since this boundary condition neglects the

conversion of combustion-generated entropy waves into sound at dependence on flow velocity can either be seen directly through
its influence on flame kinematics and shape [10],[13], or indirectlyany downstream nozzle, we expect it to be a good approximation thog.t nlec nfe-irrtoadhneo h aeo

whenthrough its influence on fuel-air ratio and hence on the rate ofwhenthetimetakn fr enrop waes t covec thrughthe combustion in LPP systems [29]. A transfer function

straight duct, I12/xd, exceeds their diffusion time. We consider

linear disturbances with time dependence e"t, and assume that in
the half plane Real(s) > 0: )(s) (8)

u-(s)

is introduced to describe this combustion response. In many cir-
lR•,(s)I < 1, cumstances, H(s) will include substantial time delays. Models
IRd(s)l < 1- (3) for the flame transfer function H(s) have been published in the

Physically, this means that the amplitude of the reflected wave literature for different combustors. However, we do not want to re-

is less than the incoming wave and may include some time delay. strict our controller design to any particular combustion system or

Simple duct terminations like open and choked ends trivially sat- model. Instead we will make general, non-restrictive observations

isfy this condition, provided appropriate energy loss mechanisms about the structure of the transfer function H(s):

are included. In appendix A, we show that condition (3) is also * (I) The flame is stable when there is no driving velocity u,
satisfied by reflection from general pipework configurations with which means that the poles of H(s) are 'stable' (ie, are in
negligible mean flow. The reflected waves f and j are easily ob- the half plane Real(s) < 0 and so lead to eigenmodes with
tained from g and h using the combustor boundary conditions*: negative growth rate).

* (II) The flame response has a limited bandwith, therefore
f(t) = R.(s)[g(t- ru)] at x = -xu H -4 0 when s -+ oo.

j(t) = Rd(sg)[h(t - -d)] at X = Xd, (4) These assumptions about H(s) fit many flame models given

where T. = 2x, /Cf(1 - a, 2 ) and 'rd = 2Xd/C2(1 - R2 2) are respec- in the literature, including premixed flames [10] and LPP sys-

tively the upstream and downstream propagation time delays, and tems [141. The eigenfrequencies can be determined by combining
Mis the mean flow Mach number, equations (7) and (8). They satisfy

"F(s)[ ] is an operator of the variable s = d. For instance, x(t) = t The same notation is used for a temporal signal and its Laplace

-y(t)] means that 4Lt(t) + x(t) =y(t). transform, for instance u(t) and u(s).
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If the unsteady pressure Pref is measured upstream the flame

1 - G(s)H(s) = 0. (9) (x,,f < 0), then P,•f is a linear combination of the upstream

When a combustor is unstable, there are roots of equation (9) waves f and g. Using (1) and the boundary condition (4) at

with Real(s) >0: linear perturbations grow exponentially in time. x = -x,, one easily obtains:

We will design a feedback controller to stabilise such a system.
_,e (s 1 + R ue ý1(I_ -• )

2.2 Actuated combustion system PU1f(S) =_ 1+ Rue-$e c 1  . el-'-4 (16)
ui (s) R,.,e-"r" - 1

In order to apply active control to our self-excited combus- Therefore, it follows from (15) and (16) that the open-loop trans-
tion system, an actuator is used to inject a perturbation and fer function of the actuated system given in (10) can be written
hence break the damaging coupling between unsteady combustion in the form:
and acoustic waves. The two most commonly used active control
inputs are loudspeaker forcing and fuel-forcing ( [18] [26][4]). We W(s) = P,. (S) = Wo(s)e......, (17)
will concentrate on fuel forcing which is the most relevant for V, (s)
practical applications. An actuator is driven to provide extra where
fuel (and sometimes air) which in turn produces additional heat
release. In order to describe the impact of this input on the
combustion system characteristics, we study the relationship ot,, = rdet + T- (18)

between V•, a voltage sent to the actuator, and Prep, the is the total time delay in the actuated system, r, is the time delay
fluctuating pressure measured at a location x-f (see figure 1). due to the actuation, Tdrt = -xfI/(Ei - ii) is the detection time
That is, our goal is to characterize the transfer function delay due to the pressure measurement location, and

W(s) = Pf(s) (10) -2.(z., +.

Va(S) -((s) WW(s) 1 + R&e 1 (1-- 1 )
which represents the actuated open-loop combustion process. We WO(s) = Plc1 1 - G(s)H(s) R&.e-1 - 1 (19)

derive this transfer function in the following.
We assume that the fuel injection is arranged so that the ex- with G(s) and H(s) given in equations (7) and (8).

ternal voltage V, results in the additional heat release Q, through
the following transfer function if P,,/ is measured downstream the flame (x~f > 0), then P-f

is a linear combination of the downstream waves h and j. A sim-
(s) _W ,(11) ple calculation, using the wave structure in equations (1) and (2)

Vý (S) and the continuity condition across the combustion zone in equa-

where W. (s) represents the actuator dynamics. Typically the tion (5)a, shows that the transfer function Pf(s)/V,(s) again
actuator will be a valve with the characteristics of a mass-spring- has the form given in (17), provided that the right-hand side of

damper system, whose dynamics are described by the transfer equation (19) is multiplied by
function W,(s). If the fuel-air mixture is injected directly into the
combustion zone, the combustion response will be instantaneous
(T-r = 0). However, if only fuel is added, there will be a small mix- Pdu(s) =-X 1 1 +RuYaie--" l+Rde (, - , _--+--

ing time delay before it is burnt (-r. > 0). Often it is hazardous to X12-RdY ls2e_-so l R !-2 e '2O2+2 (20)

inject fuel directly into the flame. If the additional fuel is intro- 1+Rue

duced some distance upstream of the combustion zone, there will 2.3 General structural properties of the open-loop system
be a convection time delay r.- between injection and combustion. useful for control design
In a LPP system, it is convenient to modulate the main fuel sup-
plied in the premix ducts, in which case 7- may be a significant For the sake of clarity, only the case of an upstream pres-
proportion of the period of the self-excited oscillations. Notice sure measurement is considered here, but similar results can

that T. is independent of the flame radial position, which means be derived for a downstream pressure measurement, using the
that we assume the same time delay between all fuel injection and expression of Pd (s) given in (20). The wave description of linear
its combustion. When the combustion zone is short this is trivially perturbations in sections 2.1 and 2.2 gives the open-loop transfer
satisfied. If the combustion zone is extensive, it may be necessary function W(s) in a particularly convenient form:
just to inject fuel in a localised region to meet this constraint.

There will be additional unsteady heat release driven by the W(s) = e-`111 Wo(s), (21)
flow fluctuations. We will denote this naturally occuring rate of
heat release by Q_. It is related to the velocity fluctuations by ie the product of a pure time delay and the transfer function
the flame model in (8): Wo(s) defined in (19). We will now show that Wo(s) has some

general structural properties that are useful for the control de-

Hl(s) = Qn(5) (12) sign. First Wo(s) given in equation (19) is expanded into a ratio-
u1 (S) nal form. This is achieved by applying the Pad6 approximation

For linear fluctuations, we can superimpose the fluctuating heat technique [3] for each exponential term of Wo(s). This technique
release due to external actuation Q, and the naturally occuring has been widely used in handling systems with time delays. We
heat release Q,, to give the total fluctuating rate of heat release: will use the notation . to denote the (L, M)"h order Pad6

approximant of a function f(s), which is a rational function P(s)
Q(s) = Q•(s) +- Q,(s). (13) whose numerator has order L and denominator order M. The ra-

The acoustic waves generated by Q(s) are described by (7), ie tional function P(s) is chosen such that the first L + M + I terms

G(s) = "i(s) (14) in the power series of P(s) will match those of f(s), ie

Q(s) [ L4)
From equations (11)-(13), one obtains that: f(s) = ( (22)

ui(s) _ G(s)W-(s)e ... (15) Lemma 1: The zeros of Wo are stable (ie are in Real(s) < 0):
Vc(s) 1 - G(s)H(s) Wo(s) is said to be 'minimum phase'
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Note that a rational approximation of the multiplying time delay * n* (H) > 0 since the flame has a limited bandwidth response

e-I° in equation (21) introduces unstable zeros into the open- (assumption (II)). Therefore, H(s) does not affect the relative
loop transfer function W(s) = Wo(s)es....: it is Wo(s) that is degree of Wo.

minimum phase, and not the overall transfer function W(s). The Finally, it appears that the relative degree of We is equal to
time delays in the expression of Wo(s) given in (19) are approxi- the relative degree of the actuator transfer function WT, when
mated by Pad6 expansions to give a rational approximation to the each Pad6 approximant [LIM] satisfies L <M.

transfer function l¥0(s), and the stability of the zeros of Wo(s) is
discussed. First, it is evident from equation (19) that the poles Lemma 3: The high frequency gain of Wo is positive
of the flame transfer function H(s) become zeros of Wo(s). As The hign reques inf on o th sit he
noted in assumption (I), the condition that the flame is stable The controller design requires information on the sign of the high
when there is no driving velocity ul ensures that these zeros are frequency gain k0 of W0 [211, defined as follows:

all in Real(s) < 0. Therefore H(s) does not introduce unstable go(s)
zeros for Wo. Secondly, G(s) appears at the numerator and the Wo(s) - ko , (26)
denominator of Wo(s), therefore its poles do not influence the ze- Re(S)

ros of Wo(s). Thirdly, we assume that W.(s) has no unstable where k0 is a constant, and Zo(s) and Re(s) are two monict

zeros. Fourthly, the numerator of We includes G(s) defined in (7) polynomials. To find sign(ko), we simply need to find equivalent
and is the product of terms of the form K1 (s) + K 2 (s)er, where expressions at large s for each factor of We. As noted in assump-
r is a time delay, and [K1 (s)/K2(s)J > 1 for Real(s) >_ 0 (because tion (II), H -4 0 for s -4 oo. Furthermore, n*(G) = 0, so that
the reflection coefficients R.(8) and Rd(s) have modulus strictly
smaller than 1 for Real(s) >_ 0, and also because X 12 > jYis ). 1 - G(s)H(s) - 1 for s - Co,. (27)
These factors have no zeros in Real(s) > 0, because at a zero

The other factors of WO are terms of the form 1+R(s)e-6 , where

Ki (s) r is a time delay. Make a Pad6 approximation: e-r = [LIM],
e = . (23) with L = M. Hence the high frequency gain of [LIM] is (-1)M.

In appendix A is shown that the high frequency gain h of R(s)

Equation (23) cannot be satisfied in the half-plane Real(s) Ž_ 0, satisfies 1h] < 1. Therefore, the high frequency gain 1 + h(-1)M
because there le-rI < 1, while IK1(s)/K2(s)J > 1. We need to of the term 1 + R(s)e-s has the same sign as 1. Finally, at high
check that this remains true after a suitable Pad6 expansion of frequencies, the gain of W 0 is easily found to be positive when

eC". After the Pad6 approximation is made, one has to solve each Pad6 approximant [LIM] satisfies L = M.
equations of the type There is a straightforward reason why Wo(s), in the open-loop

transfer function P,,f/VI = Wo(s)e-r'°o, has the simple proper-
L ,-K(s) (24) ties outlined in lemmas 1 and 2. For Real(s) Ž 0, the amplitudes

- K2 (s) of the oscillations do not decrease with time and the boundary

in order to find the remaining zeros of Wo. Baker & Graves- conditions IR.[, 1Rd] < 1 ensure that the largest contribution to

Morris [3] introduce the concept of A-acceptability for rational P,,i is from the acoustic wave leaving the combustion zone, rather

functions: a rational function R(z) is A-acceptable if IR(z)j < 1 than the waves subsequently reflected from the boundaries. Under

for Real(z) < 0. They go on to prove that the Pad6 approximant these circumstances, the main structure of Wo(s) in equations (19)

of the exponential function [L/M]e, is A-acceptable provided that and (20) is dominated by the properties of W,,(s), the other mul-

M = L, L + 1 or L + 2. Therefore, with such a choice of L and tiplying factors do not introduce unstable zeros nor affect the rel-

M, we obtain that ative degree.
It is interesting to note that this argument remains true if the

form of actuation is a loudspeaker, provided the loudspeaker is
I [L/M]e,_ I < 1 for Real(-sr) < 0. (25) located within the combustion zone. However, this situation is

However, [Ki(s)/K2(s)J > 1 for Real(s) 2_ 0, so equation (24) more complicated when the loudspeaker is at a general axial po-

has no roots in Real(s) > 0. On Real(s) = 0, the numerator sition in the combustor. Then, since the combustion zone is an

and denominator of the Pad6 approximant [L/M],_* are complex active component, it can reflect a wave of greater amplitude than

conjugate when L = M, which means that I [M/M]., I = 1 in the incident wave: if Rf denotes the reflection coefficient at the

Real(s) = 0. Hence, since [K1 (s)/K2(s)J > 1 for Real(s) = 0, flame, RfjI > 1 is possible even in Real(s) >_ 0 [27]. Under these

equation (24) has no roots on Real(s) = 0, when L = M. circumstances, P,,ef/Vc can have unstable zeros for some positions

Therefore, it has been proved that all the zeros of W0 are stable, Xzef. Lemma 1 therefore is not true for general loudspeaker po-

provided that the (L, M) 1
h order of each Pad6 approximant is sitions. This is consistent with the observations of Annaswamy

chosen so that M = L, for any M. et al [1] who calculated PfI/V, for a particular idealised com-
bustor with loudspeaker actuation. They found that no simple

Lemma 2: The relative degree of Wo is equal to the rela- relationship could be derived between the locations of the sensor,

tive degree of the actuator transfer function actuator and flame, and the zeros stability. For instance, for the

An essential feature required for the control design is the relative particular case of sensor and actuator collocated at the flame, their

degree n* of Wo, denoted n*(W•), which is the degree of the open-loop plant P,,f/VI had no unstable zeros. However, for the

denominator of W 0 minus the degree of its numerator. n* (Wo) particular case of fuel forcing, the open-loop transfer function sat-

is the sum of the relative degrees of its various factors. Again isfies lemmas 1 and 2, properties that greatly help in the control

working from the definition from the definition of W 0 in (19): design.

"* n*(G(s)) = 0 when the (L, M)th order Pad6 approximant for 3. Fixed regulator design
each exponential term e", and e-I'r satisfies L < M (we

assume that R, (s) and Rd(s) have a relative degree equal to We have shown that for fuel actuation the open-loop transfer

zero, as it is described in Appendix A). function has a simple form: it can be written as the product of a
_(+, • ±~,.,pure time delay and a transfer function Wo(s) which is rational

Ssimilarly, n*( (1-) 0whenthe M or- after a Pad6 expansion is made: Pre1 (s)/Vc(s) = e-•t°"Wo(s).
"""--.. 1 0 when the (L, M)th or- We will begin by designing a controller for the particular case

der Pad6 approximants for each exponential term e-*u and
- 2,• +-1) la monic polynomial denotes a polynomial whose leading coefficient

e C1M 1 ) satisfies L < M. is unity
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r-ot = 0 and will then extend these ideas to the general and more left half plane Real(s) < 0. However, since (35) is not true in
practically relevant case rtot i4 0. general, a better strategy is to use the following regulator:

3.1 System without time delay (rtot = 0) K 2 (s) = kc S + z, (36)
s + Pc

It is clear from equation (18) that 7'tt = 0 requires that where pc and z, are some positive constants, pc > z.. K2(s)
the control fuel is injected and burnt with no time delay (T, =0), corresponds to a phase-lead compensator, which adds phase, ie
and that the reference pressure is measured in the combustion damping, in a frequency range [zc, p].4 Then the closed-loop poles
zone (x,,f = 0). Our open-loop combustion process is then are the zeros of
described by

RUE(s) = (s + pý)Ro(s) + kok (s + zý)Zo(s). (37)WO oZo(s) (28)
We(s) = Prc(s) -ko Zo(s) For a 'large k.' and an adequate choice of z, and pc, the n zeros of

RI(s) can be moved towards the left half plane. More precisely, a
where k 0 is a positive constant, and Z0 and Ro are two monic finite value kc,_, > 0 and some positive constants p, and z, exist

polynomials. Furthermore, Zo and Ro are 'coprime' polynomials, such that
which means that they have no common factors. From lemma 1,
we also know that Zo is a stable polynomial (ie it has only zeros in Ik~I > Iýc

Real(s) < 0), whereas Ro(s) has unstable zeros since our system sign(kc) = sign(ko)
exhibits self-excited oscillations. Finally, if Ro has degree n, Zo
has degree n - n*, where -(zeros of Ro) - -(zeros of Zo) < p, - zc (38)

is a necessary and sufficient condition to stabilize a minimum
1 < n* = n*(W,) < 2. (29) phase plant of relative degree 2 with the regulator K2(s). Notice

(n* = n* (W.) comes from lemma 2, and most practical actuators that K2(s) is also guaranteed to stabilize a minimum phase plant
have a relative degree of l or 2). of relative degree 1.

Tothav a pen-loop relaemweative dk oIn the following, the compensator K2(s) given in equation (36)
To this open-loop system, we will apply an active feedback will be implemented as shown in figure 2. The feedback transfer

.(30) function for this system is given by

Pre f kC2 V
Yce -ý kV kl P,ýf (39)The aim of the regulator is to stabilize the system, ie to make all s + Z(

the closed-loop poles stable. Combining (28) and (30) shows that ie
these poles are the zeros of

V1 = _ ki(s +z,) (40)
R.I(s) = Ro(s) + K(s)koZo(s), (31) Prey s + z, + k2

The regulator transfer function K(s) is to be determined using It is clear from equations (40) and (36) that k1 represents the
roots locus arguments [8]: gain k. and k2 determines the phase lag p, in K 2 (s).

If n* (Wo) = 1, consider the transfer function i + Vc Pref
ko(ZoIRal

Kl(s) = kc,, (32)

where k, is a constant. Then the closed-loop poles are the zeros

of the

Rj(s) = Re (s) + ko kc Zs (33) Figure 2: Fixed low-order controller structure for Trt = 0, n* < 2

For 1kI 'large', n - 1 zeros of Ri(s) will be moved towards the
n - I stable zeros of koZo(s). Investigation of the large Isl asymp-
totic form shows that the nth zero of R. 1 (s) is also stabilised if However, the major drawback of such a fixed regulator K 2 (s)
sign(k,) = sign(ko). Therefore, a finite value k, > 0 exists is that a cautious choice of Pc is necessary if the inequality (38)c
such that is to be guaranteed without detailed knowledge of the plant. This

in turn can mean that the gain k, required to achieve control is

IkJ > k,.,, sign(kc) = sign(ko) (34) large, especially to ensure stabilization under varying operating
conditions, ie under uncertainties in the unstable frequencies w_.

is a necessary and sufficient condition to stabilize our minimum A large k, means a large control effort, which is to be avoided.
phase plant of relative degree 1. Therefore, to improve the response of our regulator K2(s) under

varying operating conditions, one can choose a fixed z, > 0, and
If n* (Wo) = 2, and the regulator K, (s) is used, then a large make the other control parameters k, and pc adaptive. This is
lkI will guarantee that n-2 zeros of Ri(s) will be moved towards the topic of section 4
the stable zeros of koZo(s). The two remaining complex conjugate
roots of RI(s) = 0 will be moved towards the stable half plane 3.2 Combustion system with known time delay (-trot 6 0)
Real(s) < 0 only if

Here the combustion process is described by
sign,(Ic) = sign•(ko)

1_(zeros of R -) - < 0. ( W -s) P= ,, (s) - ko ZO(s)e-'•,o - W0(s)e-aot, (41)
,(zerosofZ) < 0.s V(s) Ro (s)

As explained by Dorf & Bishop (8], equation (35)b guarantees with k0 a constant, Zo and Re two coprime and monic polyno-
that the asymptote centroid of the root locus is situated in the mials, and -"tot is a known time delay. Re has degree n, and Z0
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has degree n - n*, with n* = 1 or 2 (lemma 2). It was shown in

section 2 that Zo is a stable polynomial (lemma 1) and that ko is Vsc(t) - (Ro(s) - 2 (S)e )[vc(t), (45)

positive (lemma 3). Ro(s) Re(s)

In section 3.1, low order controllers of the form (32) and (36) where

were used to control the combustion process. Here, the presence of
the time delay Tiot makes such controllers inadequate, especially ni(s) n ai

when rtot is of the order of the period of the unstable mode. Con- Ro(s) f=1 s -fi
trol of systems in the presence of time delays has been extensively n2(s) - ()
studied [30][19][15]. A popular approach to accommodate large aZ (46)

delays is due to O.J.M. Smith [30]. The Smith Controller (SC) Ro(s) s -s-i

attempts to estimate future outputs Pr-f of the system using a We prove in the following that the low order controller associated

known model, and provides an appropriate stabilization action. with the SC (see figure 4) will stabilize our minimum phase plant

In Manitius & Olbrot [19], the SC was modified to control sys- of relative degree 1 or 2 for a small rufi. With the controller

tems that are open-loop unstable by using finite-time integrals of structure described in figure 4, the closed-loop transfer function is

inputs V, to estimate future outputs (the goal of this modification given by

was to avoid unstable pole-zero cancellations). In Ichikawa [15], ko(s + zý)Zo(s)e.srt...
"a SC controller with finite-time integrals was derived to serve as WRi(s) = - ci0 (s)e ..... , (47)

"a pole-placement controller. In [24] and [16], adaptive versions of Rw,(s)
the pole-placement controller have been developed and proved to where the closed-loop poles are the zeros of
be stable.

Since our plant is open-loop unstable, we want to implement R~i(s) = A(s) + B(s)e-T'°', (48)

a SC using the finite-time integral suggested by Manitius & 01- with

brot [19] and used in Ichikawa [15], and which is given by A(S) =-- (s~zc)(Ro(s)-ni(s))÷k2 Ro(s) (49)

o B(s) = (s+z,)(n2(s)+kjkoZo(s)). (50)

Vsc(t)= f A(W)V,(t +o)da, (42)
-- Tt 

' SC

where A(u) is a weighting function (it is shown in section 4.2 how +
discrete values of A(.) can be found by adaptation). Ief

Briefly, the controller used in [15] and shown in figure 3 has the
following form: 0

D ((s)

where the operators C(s), D(s) and E(s) are chosen such that the
denominator of the closed-loop transfer function matches a chosen Figure 4: A fixed low-order controller structure for rot # 0 n K 2
stable polynomial. This can be achieved only if degree(E) = n,
degree(C) = n - 2 and degree(D) = n - 1. This means that even
for a plant of low relative degree (n* = 1 or 2), if the order n is
large, then the controller dynamics C/E and D/E will be of high If r-t~t = 0, then equation (46) gives that ni (s) = n2(s). There-

order. This differs from the delay-free case described in section fore,

3.1, for which a first order compensator could stabilize the plant ) = (s+z 0 +k 2)Ro(s)+kiko(s+z,)Zo(s)
of relative degree 2 or 1. = (s ) say (s)

= Ao(s) say. (51)

+ That is, the closed-loop polynomial coincides with that in equa-

+ Ption (37), which was for the delay-free case. As shown in section

ko(Zo/Ro)e - 3.1, Ao(s) is stable for certain choices of ki and k 2 .

If rTtt 0 0, we show that the controller structure given in fig-

ure 4 still guarantees stability. Since the polynomial n2(s) is of
_ 2 degree n - 1, its coefficients can be chosen such that

n2(S) = -kikoZo(s), (52)

Figure 3: A nth order controller structure for Trt • 0, given in which implies, from equation (50), that B(s) = 0 and therefore
Ichikawa's paper [15] RI(s) = A(s).

Furthermore, it is clear from equation (46) that the polynomials
ni and n2 of the SC are linked. More precisely, the choice of n2

However, our aim is to keep a low order compensator to control in (52) imposes restrictions on nli: it means that the coefficients a,,
the plant as it was done in section 3.1. Therefore, we suggest and hence ni, are proportional to koki. When rtot = 0, n12 = ni,
the controller structure given in figure 4. We begin as in [15] by we will emphasise this scaling by writing:
choosing A(a), the weighting function in the Smith Controller, to

have the form n2(S) = ni(s) + rtotkoktn3(s), (53)

where n 3 is a polynomial of degree n - 1, with finite coefficients-

(r) - e(44) Therefore, using (52) and (53) in (48), the closed loop poles are
i= the roots of

where )3; are chosen to be the n zeros of the polynomial Ro(s),
whereas (at this stage) the a, are arbitrary coefficients. Then, af- Ra(s) = (s+ze+k2 )Ro(s)+kiko(s+z,) [Zo(s)-Totn3(s)] (54)

ter substitution into (42) and evaluation of the integral, we obtain
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For 'small' Trot, ie for TrtotwO <0(1) where w. is the highest (a)

frequency among the zeros of Zo, the zeros of T(s) = Zo(s) - kl , ,,• .. .
Oign(k 1) 14 2 ',dpL -

rtotna(s) are close to the zeros of Zo(s), and hence are stable.
Therefore, for Ikil large, n - 1 zeros of Re1(s) are stabilised. The
2 remaining zeros of Rc1(s) are obtained at large s, (kl1(s + z, + • k1i kbO

k2 )Ro(s) is not negligible compared to (s + z,)(Zo(s) - rto.tna(s)) k14' \1<o \•a "
when s >O(k• 1 ), and this is where we find the 2 remaining zeros -2 k">O /b k 1>O MA

of Rd(s)). After division by s'-1 of the 3 highest coefficients of 2

R.I(s), we obtain o

s2 + (k2 - ksko-rtotC)s + (kiko - kikort0 tCze) (55) (b) I,

where C is the highest coefficient in n3 (s). The 2 remaining roots so -
of R,,(,) are stable if the polynomial (55) is stable, ie if

40

k2 - kikortotC > 0 30

kiko(1 - TtotCz,) > 0. (56) _ _U

In the range of values of Trot considered (ie rtotw, <0(1)), one 10.
easily checks that C - +1 and that (56) is satisfied for some ki > 0

and k2 > 0. Therefore, we proved that for 'small rt,t', all the 4
0- 2n ir 6,r

closed-loop poles, ie the roots of Rcm(s), are stabilised for some *-'
bu~l m d -tiex nlml wmrolllo c~iif .. .uý, l~

ki > 0 and k2 > 0. In other words, a plant of relative degree n* <2 2, ,,I,,,....
with a time delay trot not too large is stabilized by the controller
structure given in figure 4, and the controller equation is given by: Figure 5: Comparison of simulation results for an infinite order plant

(model described in section 5, w, = 370 rad/s) with theoretical results
0 for a second order plant (appendix C). (a) ki obtained in simulation and

Ve(t) = -klPrei(t) - k2  [Vc(t)] +- f A()Vý(t + a) do. (57) sign(km) required for stability for a second order plant. (b) simulation:
control obtained periodically up to w.-rtot - 3 cycles of oscillations.

In practice, the constraint on the size of rtot is not so strong:
simulation results for a nonlinear model of an infinite order plant 4. Adaptive regulator design

descibed in section 5, show that control is obtained with ki > 0
and k 2 > 0 for ro • t where w5 is the main unstable mode. 4.1 System without time delay (rot = 0)
Furthermore, for higher values of ntot, up to Trtt -- 3 cycles of oscil-
lations, we observe some periodic stability bands according to the It was shown in section 3.1 that a first order regulator
values of wrtot (figure 5b): a 'stability band' corresponds to val- K 2 (s) = kc(s + z p)/(s + p) will stabilize our combustion process
ues of W,,rt.t for which control is obtained after a finite time called which is minimum phase and of relative degree less or equal to
settling time. Between two consecutive 'stability bands', there are 2. The adaptiv ve rsion of this regulator, called Self-Tuning
a few values of w.utot for which control is not obtained (the set- Regulator (STR), is given in figure 6.
tling time is then infinite). It was also observed that the sign VC Pret
of the first order compensator gain k, achieving control changes +ko(Zo/Ro)

between two consecutive stability bands (see figure 5a). These
observations on sign(ki) and on the stability bands pattern can lI(s+zc)
be interpreted as follows: for frequencies smaller or equal to wý,k
the open-loop transfer function can be approximated by a second k

order system
1

kl(s - c,)" + w (58) Figure 6: Low order adaptive controller for rtt = 0, n* < 2

wher ko' =- ko62 -- W2 ý constant coef ficient of • .where k/ =0 koaf fw) *enl f is a positive gain1 .
It is shown in appendix C that a plant of order 2, whose transfer With this controller structure, the closed-loop transfer function
function is given by (58), is stable for any delay Trot which satisfies between some input noise i and Pref is

ki sin(wu.T-tt) < 0

1/ tan(w tt) - Z < 0() = Wa() -= o(s + z,)Zo(s) (61)-- U < 0 ( 9 i ( s ) R ., ( s )

Hence, such a plant is characterized by a pattern of periodic and the closed-loop poles are the roots of
stability bands according to the values of w,-Ttot, as shown in figure
5a. We see also from (59) that the sign of ki required for control RI(s) = (s + z. + k2 )RO(S) + kiko(s + z,)Zo(s), (62)
satisfies

where z, > 0 is fixed, and two controller parameters, ki(t) and
sign(km) = -sign(sin(w,.tot)), (60) k 2 (t), are tuned. It is clear from equations (62) and (37) that

which corresponds to observations from the simulation (see figure ki represents the gain k, of the fixed regulator K2(s), while k2

5a). Ini a practical combustor, the time delay rtot would usually is used to tune p,. In the following, vectors axe denoted in bold
not exceed 3 cycles of oscillations, therefore our controller appears characters and T denotes the transpose of a vector. We introduce:

very adequate for control of combustion oscillations. * the unknown controller parameter vector k(t)T =

§the zeros of Re are complex conjugates, hence the constant coeffi- [-kl(t), -k 2 (t)], and the error parameter vector k=-k-k*,
cient of Ro is positive. Z0 is monic and stable, therefore its constant where * denotes a value for which closed-loop stability is
coefficient is also positive, achieved.
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* the data vector d(t)T = [Pref(t),V(t)], where V(t) = 1/s+a) k Si- V

1T7 [V,(t)] and z, is a positive constant. In an experiment, d d
d can be determined at each t from the measurement Prf
and known V,. Figure 7: Modification of the control input V.

We now need to find an updating rule for k, so that stabilisation
can be accomplished fo any parameters in Wo(s).

Case (i) : n*(Wo) = 1. This corresponds to a case for which 4.2 Combustion system with known time delay (T~t 5 0)
Narendra & Annaswamy [21] have developed a STR. However,

we will repeat the main points of their argument because they The controller structure given in figure 4 includes fixed controller
provide the background to our novel STR for the case with time parameters ki, k2 , ai and f3 which need to be chosen based on
delay in section 4.2. When n*(Wo) = 1, the closed-loop transfer the system parameters. Under uncertainties and variations in
function Wd given in (61) has then a relative degree equal to 1 and the operating conditions, it is more appropriate to adapt those
is 'Strictly Positive Real' (SPR), which is the essential property control parameters. Hence, we choose an adaptive controller
required to develop a global stability analysis based on Lyapunov's structure as shown in figure 8.
direct method [21]. Such a method aims at finding adaptive laws
for k which are guaranteed to stabilize the self-excited combustion vs
process. Essentially, the strictly positive realness of Wc means
that it is possible to find a quadratic positive function V1, that
decays in time when k is updated correctly. Such a function V1  ko(Zo/Ro) ds •tO

is referred to as a 'Lyapunov function', and can be viewed as an
energy function: if this function decreases, it implies that the
system is stabilised. To summarize Narendra & Annaswamy's
results [21], when W 0 has a relative degree equal to 1, the STRI

which guarantees the stability of the system is described by:

V1(t) = kT(t).d(t) Figure 8: A low-order adaptive controller for TtIo $ 0, n* < 2

k(t) = -sign(ko)P•,f(t)d(t), (63)

where sign(ko) = +1 from Lemma 3. For reference, equa- In the control law given in equation (57), the finite-time inte-
tion (63) comes from the application of lemma 5.1 in Narendra gral due to Smith Controller and given in equation (42) is approx-
& Annaswamy [21], noting that imated as follows:

((64) N
Vsc(t) =- E )i(t)Vc(t - idt). (69)

£= i

Similar to the delay-free case, we define the controller parameters
Case (ii) : n*(Wo) 2. In this case Wd is not SPR, but and data vectors k and d respectively:
the approach of Annaswamy et al [2] shows that modifying the
control signal V, as indicated in figure 7 effectively makes the * k(t)T [-k 1 (t),-k 2 (t), AN(t),..., )l(t)], and its error vector
closed-loop transfer function W.1 have relative degree 1. Following k = k - k*.

their approach, we write - d(t)r = [Pef(t), V(t), V,(t - Ndt), ... , Vc(t - dt)], where
V(t) = +-•, [Vo t)I.

Vc(t) = (s + a)[kT(t).da(t)[ (65) Therefore, as the time delay T to1 is increased, N must be in-

where d.(t) - [d(t)]. After some simple algebra, V, can be creased and more controller parameters are required. We are look-

written as ing for an updating rule for k.

(t) = kT(t).d(t) + kT(t).d(t). (66) General case : n*(WO) < 2. As in section 4.1, the closed
loop transfer function Wa0 given in (47) is made to effectively

Now, we have have relative degree I by using a modified control signal V. (see

figure 7). Then we obtain:

Pref(t) = W, 1(s)(s + a)[kT(t),da(t)]

= Wm(s)[kT(t).d.(t)], (67) P_ f(S) = Wai0(s)(s + a)e..... [kT(t).da(t)] (70)

where Win(s) = (s + a)Wa(s) is the new closed-loop transfer where d,(t) = -- 3 [d(t)]. Due to the presence of the time delay

function of our system, which has relative degree 2 and is SPR. e"'""•, the Lyapunov function V1 used in the delay-free case will
Noting that equation (67) looks similar to equation (64), lemma not decay in time. So we need to add an extra positive term
5.1 [21] can be applied: the STR which will guarantee the stability in V1, in the form of a double integral f f iIk(k)I 2dAdv, to
of the system of relative degree 2 is given by: -rio, t+'

account for the time delay rot. Then we have 11 _< 0, and hence

Y -(t) = kT(t).d(t) + k(t)T.da(t) a system whose energy is decaying in time (see details of proof

k(t) = -sign(ko)P,.0 (t)d.(t), (68) in Appendix D). Therefore, with the Lyapunov function given in
equation (98), the stability of the system is guaranteed when one

where sign(ko) = +1 from Lemma 3. uses the following STR:
An important remark is that the STR described for the case

n*(Wo) = 2 will also work if n*(We) = 1, which means that even Vc(t) = kT(t).d(t) +k(t)T.d,(t)
if the actuator dynamics are not very well known in practice, the k(t) = -sign(ko)Prei(t)d.(t - Tt), (71)
STR design given in equation (68) will always give satisfactory
results. where sign(ko) = +1.
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Particular case : n*(Wo) = 1. Then the manipulation on For both cases, a convergence coefficient p is added in the

V, shown in figure 7 is not required, and therefore the following adaptive law for each controller parameter. The controller
simpler algorithm can be implemented: parameter vector k is initialized to zero. Simulations results are

given in the next section.

V (t) = k T (t).d(t)

k(t) = -sign(ko)Pref(t)d(t - tot), (72) 5.3 Simulation results

where sign(ko) = +1. System without time delay (Ttot = 0). Figure 9 shows

5. Application to a premixed ducted flame (simulation) the time evolution of the pressure measurement P,.,/ and the cor-
responding control signal V, for varying operating conditions. The

control is switched on at t = 0.15 s, when the limit cycles are al-
5.1 Nonlinear flame model used in the simulation ready established (operating conditions: 0 = 0.7, M1 = 0.08).

The oscillations tend to zero within 1 s; note that the settling
A model for nonlinear oscillations of a ducted flame devel- time depends on the convergence coefficient pt used. Then from

oped by Dowling [10] will be used to verify the controller tiedpnsothcnvrnecefcetpue.Tenrm
opedformance. by e to g [ ilolvbes uedxteion vfy the comoeler t = 1.95 s to t = 2.1 s, R 1 is increased to 0.095: in the open-loop
performance. The theory involves extension of the flame model sse uhacag hfstefeunyo h ntbemd

of leiil t a[13 toincudea fameholer t te cntr ofthe system such a change shifts the frequency of the unstable mode
of Fleifil et al[13] to include a flame holder at the centre of the from 58 to 63 Hz. Nevertheless, the STR is able to maintain con-

duct and nonlinear effects. Due to page limitations, the reader is from Cn in thel tio S hv also bee n ccsl
aske torefe to[10)fordetals.trol. Changes in the fuel air ratio 0 have also been successfully

asked to refer to [10] for details. tested. It has been observed that the STR works fine even if xef

is chosen anywhere upstream the flame, which is interesting for

5.2 Adaptive regulator design practical applications where a pressure measurement directly at
the flame may be difficult to perform.

The flame model described in [10] fits in the class of corn- o0

bustion systems given in section 2, since:

"* the upstream reflection coefficient has a modulus strictly

smaller than 1 (choked end: R. = (1 - M5!)/(1 + 17/ 1)) , in
agreement with equation 3. Notice that the downstream re-
flection coefficient has modulus just equal to 1 (ideal open
end: Rd = -1). However, with care the condition IRd(s)I < 1
in equation 3 can be relaxed to JRd(s)J < 1 provided an C._

upstream pressure measurement is made. This is because
in the transfer function G(s) given in (7), 1X121 > 1Y121 and -o2-

IX221 > jY 2 2 1. C4j-I 1. C

"* after linearisation for small perturbations, the flame transfer
function is given by (see [10]): Figure 9: STR for rt,,t = 0, MV is varied linearly from 0.08 at t 1.95

s to 0.095 at t = 2.1 s ... : controller OFF, -: controller ON after
t =0.15 s.

H(s)= Qý(s) 21AHe-`2 [abeS +-. _e-1)-1) (73)
UG(S) Sfe -(b+a) I-s

Therefore, H -4 0 as s -* oo, and H(s) has no poles: hence System with time delay (-rot $ 0). This is the most in-
assumptions (I) and (II) are satisfied. teresting case for practical applications. As already illustrated in

Hence, section 2 proves that, once the system is approximated section 3 (see figure 5), control is obtained for values of rot much

as finite dimensional, the relative degree of the open-loop transfer larger than those predicted by the theory: control is achieved pe-

function W0 is equal to the relative degree of the actuator transfer riodically up to Ttof - 3 cycles of oscillations (ie up to wTt~it - 67r

function. As in Evesque et al [11], the actuator chosen is a fuel where w. is the unstable mode). The settling time varies peri-

injection system modelled as follows: odically: control is easier in the middle of a stability hand, and
becomes more difficult on the boundaries of a stability bands. As
in the delay free case (-trott 0), the actual value of the settling

Qc(s) (74) time depends on the convergence coefficient 1L chosen. A typical
Vc(S) s

2
/w2, + 2cs/w5 + 1 time evolution of the pressure oscillations while control is applied

where w, and c are respectively the resonance frequency and is shown in figure 10. There, in order to test the adaptability of

damping of the fuel injector. From equation (74), we deduce that our STR under varying operating conditions, the mean upstream

the relative degree of Wo is 2. Section 2 shows also that the 'high Mach number M1 is increased from 0.08 to 0.095 between t = 1.95

frequency gain' ko is positive and that the zeros of Wo are stable. s and t = 2-1 s: the STR successfully maintains P,,f at zero.

Two cases are studied in the simulation: 6. Conclusions

"• a system without time delay (it- = 0). This is achieved by A general combustion system, susceptible to combustion instabil-
making the pressure measurement at the flame (ie x,ýf= 0) A and stion te su mptibe to c onsi l-
and by setting the time delay 7. to zero in equation (74). ities, and satisfying the following assumptions, was considered:

Then the STR is implemented as indicated in equation (68), 1. the pressure reflection coefficients at the boundaries of

with sign(ko))= +1. the combustor have a modulus strictly smaller than 1 in
Real(s) >_ 0.

"* a system with time delay (Tr-t~ # 0). The pressure mea-

surement is chosen for instance at xrf = -x./2 and the 2. the flame response has a limited bandwidth: at high frequen-

delay ra can be varied. Then the adequate STR to control cies, the flame does not follow incoming velocity fluctuations.

the self-excited oscillations is given in equation (71), with 3. the flame is stable in itself, it becomes unstable only due to
sign(ko) = +1. the interaction with the acoustic waves in the combustor.
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Figure 11: upstream pipework system

These assumptions axe true for a choked end at x = x 0 for in-

Figure 10: STR for rtot -23 ms, xf --- x,/2, M 1 is varied linearly stance. In the following, we show by induction that for all i,

from 0.08 at t = 1.95 s to 0.095 at t = 2.1 . controller OFF, - Ru. (s) < I in Real(s) >0, and n*(R,2 1 (s)) = 0.

controller ON after t = 0.15 s. At x = xi, the reflected wave fi is related to the incoming wave
gi:

4. the actuator used for control is a fuel injector which produces fMt) = e- e Ruj (s) [gi(t)]. (76)

a heat release rate Q, related to the voltage V0 driving the Writing the continuity of pressure and mass flux across x = xi+1,
actuator simply by a time delay and a first or second order and using the boundary condition (76) leads to the following re-
differential equation. lationship between the reflected wave f,+1 and the incoming wave

We demonstrated that such a combustion system is essentially gi+, in the duct i + 1:
represented by an open-loop transfer function

f,+1 (t) = e-22 +2•+ Ru.+t (s) [gi+l (t)], (77)
W~)--Prej(s) ,_ Zos)....

W(s) = V0(s) H -"o ) where

where Pf is a pressure measurement in the combustor and V, Ki + Ru.(s)e-i
is the voltage driving the fuel injector used as control actuation. Ru+•(s) 1 + R, 2 (s)e'2 (78)
Some general properties have been derived: I + KjR,(s)e-11i

(i) the zeros of Zo(s) are all stable (ie are in Real(s) < 0) Ki - Ai+ 1 - Ai (79)
(ii) Once Zo/Ro has been made rational using a Pad6 expansion, Ai+1 + Ai

the relative degree of Zo(s)/Ro(s) is equal to the relative degree Ti -2(xi+l - xi) (80)
of the actuator transfer function, ie 2 for a fuel injector. c

(iii) k0 is a positive gain. By inspection KKi[ < 1. Furthermore, from (78), one deduces
These properties have been exploited to design an adaptive con- that n*(R&j(s)) = 0 implies that n*(Rui+,(s)) = 0 after a Pad6
troller guaranteed to stabilise the self-excited combustion system. expansion [MIM] for e-s

0
i is made. Let us write R., in the form

In particular, for the case of a combustion system with time delay R•. (s) = JRu, (s)Ie-'i in equation (78). Then one easily obtains
(Trot 0 0), which is the most realistic case, the design is completely
novel: it involves a first order compensator combined with a Smith K?+[R. [2e-26i+2Ki[R• (s)le-6icos(0•) (81)
Controller. The adaptive laws for the controller parameters are ARu+ = )1K+IK2I[R,1

2
e-26+2KiRu(s)le-, cos(0•)

derived based on a Lyapunov stability analysis. The adaptive con- where Oi = Imag(s)-ri + ai and S = Real(s)7%.
troller has been tested successfully on a simulation of a premixed The re P b the nd an t deaomsnat.
ducted flame. An experimental verification is planned over the The difference P between the numerator and the denominator
next months, of .Ru+, (s)12 1s equal to
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ing Engineer at the Massachusetts Institute of Technology. The
support of MIT in making this collaboration possible is gratefully Now we assume that at x = Xi, the high frequency gain
acknowledged. AMA is sponsored by the Office of Naval Research, ho of Ru0 (s) satisfies
under grant N00014-99-1-0448.

1hol < 1. (83)

APPENDIX (this is true for a choked end). We show by induction that for all

i, the high frequency gain hi of Ru(s) satisfies Ihil < 1.
Appendix A. Consider linear disturbances with time depen- From (78), after a Pad6 expansion [MIMI for e-"i is made,
dence e" in the pipework system upstream the combustion zone, one deduces that
as shown in figure 11. The Mach number considered is so low that
we assume there is no mean flow in the pipework system. The pres- Ki + hi(-1)M
sure reflection coefficient at an axial position xi is &, (s). The h,ýý= 1 + Kihi(-1)M" (84)
cross-sectional area of the duct i between x = xi and x = xi+1
is Ai. The mean speed of sound is E and the mean density is ý. and hence
At xo, we assume that the pressure reflection coefficient RH,(s)
satisfies 2h K2 + h? - 2(-1)M Kihi1h I I = -¥ - 1T - (85)

1+ + 2Kihi(-1)M + Kl~h?'85

IRuo(s)l < 1 in Real(s) > 0 The difference Q between the numerator and the denominator of

n* (Ruo(s)) = 0. (75) hi+i is
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... kl<O : dosed-loop stability

S I I

kl>O
Figure 12: downstream pipework system

0+,r

Figure 13: sign(ki) and values of wsurbot for which a plant of order 2 is
guaranteed to be stabilised by the fixed controller described in figure 4

Q =(1-K?)(h? - 1). (86)

Hence, Ihil < 1 implies that Q < 0 and therefore Ihi+1l < 1.

Similarly, for a pipework system downstream the flame, ended Appendix D. We start from equation (70):
by a nozzle (see figure 12), we assume that at z = zo, the pressure

reflection coefficient Rd. satisfies the assumptions (75) and (83),

which is true if the nozzle is compact [20]. By induction, it can PreJ(t) = W(s)e ..... [fT(t).da(t)], (93)

be shown that at any position z = zj, the downstream pressure where Wn(s) = WIo(s)(s + a) is SPR and da(t) [d(t)].

coefficient Rd, and its high frequency gain hj satisfy The adaptive law is chosen as

n*(Rd,) = 0 k(t) = -Pref(t)dO(t - trot) (94)

1IRdjW)I < 1 (87) (a positive sign for ko is assumed).

hjI < I . (87) (Equation (93) can be expressed in a state-variable representa-

tion as

Appendix B. The full form of the coefficients in equation (7) * = Ax(t) + (s + a) [b(kT(t - rtot).da(t - Ttot)]

is: J
Pref(t) =hT.x(t). (95)I+R 2 - )ý)-f, 1 ý) Ia

2= •-- ui-i )P22 (88) x is the 'state vector' of the system and A is a matrix. (A, b, h)
1-M' +m2 2_M

2 (1- _M) •(42 1+-,M +M 1 MP ) is the 'state representation' of Wo.
uM -M -t1 P 2 We note that equation (95) can be rewritten as

( (2 - +(t) = Ax+ (s + a) [b (jT (t)d (t -

YY-- (+ 1 1 i+) £±I-,f-,) (92 -(s+ a) bd•T(t- rt.ot) k(t + v)dv . (96)

Appendix C. Consider an unstable plant of order 2, defined

by Zo(s) = 1 and Ro(s) = (s - au)2 +w2 (au. < 0 for an unstable Using equation (94), this leads to

mode), and whose total time delay is -rtot. Using the controller

defined in figure 4, the denominator of the closed-loop transfer *(t)=Ax+(s+a)[b(iT(t).da(t-rtot))]

function is easily calculated analytically and is found to be:

Rei(s) =s3 + aS2 + bs +c (90) +(s+a) bd.T(t_,Ttot) f.,f(~~.(+-ttd (97)

where " t~t

As in Burton [7] and Niculescu [23] [22], the Lyapunov function

a = -2ar+zc+k2-kokl sin(w.rtot) candidate is chosen as

b u +u-2auý(z,+k2)+kOkle-c -toou-z sin(wurtot)+cos(Lourtot
Wu V[ = xT(t)Px(t) + kT(t)k(t) + f f [k(ý)jI 2d<d,. (98)

C = ((a2+w ,)(z,+k2)+koke- oT zc•l - sin(ws.rtot)+cos(wuTtot)1 (91) -... t+-
Stlu m Using equations (94) and (97), equation (98) leads to the time-Assuming that laul << wu (realistic assumption: the growth derivative

rate is much smaller than the frequency of the unstable mode),

the Routh criteria applied to !c, (s) shows that Rdi (s) is stable for
some k 2 > 0 if V,=xT(AT P+PTA)x+2xT(t)P(s+a) [b (kT(t).d.(t-rtot))]

k1 sin(wsuflsot) < 00

1/tan(wu-rtot) - Zc < 0. (92) +2xT(t)P(s+a) bd.(t-rto.t) P,,(t+v)da(t+v-7tot)dv
Lo~u fto

Consider the angle 0 defined by I = and sin(O) > 0.
Then, as illustrated in figure 13: [2 2 1

* for 0 < wurtiot < 7r/2 and k, < 0, Ri (s) is stable. -2Pref(t)kT(t).da(t--tot)+ (Psj(ý))Ijd.(ý__--,t)Itkdvd (c•9

"* for 9 + 7r < w.rtot < 27r and kl > 0, Rcl(s) is stable. -,ottts J

Hence the periodic stability bands shown in figure 5a. Also Since Win(s) is SPR, lemma 2.4 [21] can be used: given a matrix

note the result that k, required for control satisfies sign(ki) = Q symmetric strictly positive, there exists a matrix P symmetric

-sign(sin(w.rTito)). strictly positive, such that
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PAPER -22, S. Evesque

Question (M. Mettenleiter)
In order to guarantee the correct update of the algorithm you use a Lyapunov function.
How does this function depend on the model of your combustion system?

Reply
The Lyapunov function is not model-based at all. Its existence relies only on the four
assumptions made on our system (see paper), but no other information on the system is
required in the Lyapunov stability analysis.
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