
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO 11032
TITLE: Convenient Molecular Approach of Size and Shape Controlled
ZnSe and ZnTe Nanocrystals

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Materials Research Society Symposium Proceedings Volume 635.
Anisotropic Nanoparticles - Synthesis, Characterization and Applications

To order the complete compilation report, use: ADA395000

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO11010 thru ADPO11040

UNCLASSIFIED



Mat. Res. Soc. Symp. Proc. Vol. 635 © 2001 Materials Research Society

Convenient Molecular Approach of Size and Shape Controlled ZnSe and ZnTe Nanocrystals

Young-wook Jun, Jong-II Park and Jinwoo Cheon*
Department of Chemistry and School of Molecular Science - BK2 1,
Korea Advanced Institute of Science and Technology (KAIST),
Taejon 305-701, Korea

ABSTRACT

Our study describes a convenient one-step synthesis of ZnSe and ZnTe nanocrystals (NC)
whose sizes and shapes are precisely tuned by varing the growth temperature or stabilizing
surfactants. We utilized molecular precursors, bis(phenylselenolate or phenyltellurolato)zinc
-N,N,N',N'-tetramethylethylenediamine (TMEDA), which effectively produce 0-dimensional
sphere or 1-dimensional nanorods of ZnSe or ZnTe, respectively. Nanocrystals are highly
monodispersed and luminescent; the emission wavelength varies over a wide range depending
on the particle size. This study constitutes a nice demonstration of direct size and shape
controlled synthesis of semiconductor nanocrystals and this method can be extended to the
synthesis of nanocrystals of other materials.

INTRODUCTION

Controlled synthesis of inorganic nanocrystals is one of the most important issues in
nanocommunity because their size and shape act as important parameters for optical and
electronic properties. Especially, 1-dimensional nanocrystals have drawn special attention
because of novel properties due to their anisotropic crystal structure [1, 2].

Shape control of nanocrystals can be achieved in gas phase by several methods. One of the
methods is template-assisted or strain-assisted synthesis in gas phase. For example, crystal
growth inside a nanoporous solid, such as silica ball template, MCM-41, leads to the formation
of nanorods, nanowires, and nanoballs [3, 4]. Pyramidal dots or nanowires can be obtained using
strain-assisted epitaxial growth [5]. Lieber et al. reported that a solid rod can be obtained using
vapor-liquid-solid growth [6] and Buhro et al. demonstrated solid rods also obtained by
solution-liquid-solid growth [7].

The other means of controlling nanocrystals is colloidal synthesis using micelle templates.
Mann et al. show that prismatic BaCrO4 nanocrystals can be obtained by introducing Ba2+ and
CrO4" ion in AOT microemulsion using structured AOT micelles [8]. Nanorods were prepared by
electrochemical reduction method [9], hydrazine reduction method [10], and simple ionic
reactions [11]. Recently, a nonhydrolytic synthesis of CdSe nanorods in hot mixture of
trioctylphosphine oxide and hexylphosphonic acid was reported [1].

In this paper, we demonstrate size and shape controlled ZnE (E=Se, Te) nanocrystals with
quantum confinement effects. Shape of zinc chalcogenide nanocrystals is controllable either
spherical or rod-like structure depending on the choice of stabilizing surfactants. Furthermore,
the size of spherical nanocrystals is controlled by the growth temperature.
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EXPERIMENTS

Trioctylphosphine (Aldrich) was used as received, while trioctylamine, and
dimethylhexylamine were distilled before use. Trioctylphosphine oxide (TOPO) dodecylamine
(Aldrich) were dried and degassed before use in the reaction vessel by heating -200" C at -1
Torr for -2hr with argon gas bubbling. Zn(SePh) 2(TMEDA) [12] and (Zn(TcPh)2)(TMEDA) [13]
were prepared following a literature method.

Low resolution transmission electron microscope image, energy dispersive X-ray analysis
(EDAX), and selected area electron diffraction (SAED) were perforncd on an EM 912 Omega
electron microscope operating at 120 kV High resolution transmission electron microscope
(HRTEM) images were obtained on a Hitachi H9000-NAR high resolution TEM operating at
300 kV. The UV-Vis absorption spectra of ZnTe anocrystals were obtained with a Shimadzu
UV-3100S spectrophotomcter and photoluminesccnce spectra were obtained with a
Perkin-Elmer LS50 Luminescence spectrometer. X-ray powder diffraction patterns were
measured on a Rigaku Miniflex instrument (0.5 kW) operating with a Cu K,(X, 0.1541 nm)
X-ray source.

ZnSc Nanocrystals. Zn(ScPh) 2(TMEDA) (0.5 g, 0.101 mmole) was dissolved in
trioctylphosphine (10 ml) and the resulting solution was injected into hot trioctylphosphine
oxide (3.92 g, 10.1 mmol). The latter solution was kept at one of four different temperatures:
320, 340, 367, or 385 'C. After 1 hr, the resulting yellow solution was cooled to 80 'C and
treated with an excess of methanol to generate a yellow flocculate, which was separated by
centrifugation and washed with methanol. The resulting pale yellow powder was readily
redispersed in toluene.

ZnTe Nanocrystals. Zn(TePh)2(TMEDA) (0.50 g, 0.88 mmol) was dissolved in 5ml of
trioctylphosphine and the resulting solution was injected into hot trioctylamine (8.17 g, 44.1
mmol) solvent. The reaction mixture was kept at two different temperatures: 180 or 240 "C.
After 2 hr, the resulting yellow solution was cooled to 40 C' and treated with an excess of
anhydrous butanol to generate a yellow flocculate, which was separated by centrifigation and
washed with buthanol. The resulting a pale yellow powder was dispersed in organic solvents
such as toluene.

ZnTe Nanorods. Zn(TePh)2(TMEDA) (0.50 g, 0.88 mmol) was dissolved in 5ml ofpyridine and
the resulting solution was injected into hot mixture of trioctylamine (20 ml) and
dimethylhexylamine (5 ml). The reaction mixture was kept at 180 C. After 2 hr, the resulting
yellow solution was treated with an excess of anhydrous butanol to generate a gray flocculate,
which was separated by centrifugation and washed with butanol. The resulting nanocrystals are
obtained as a gray powder.
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RESULTS AND DISCUSSION

Zinc chalcogenide nanocrystals were obtained by the thermolysis of [Zn(EPh)2][TMEDA].
According to thermal gravimetric analysis (TGA), it is observed that the thermolysis of
[Zn(EPh) 2][TMEDA] begins with the dissociation of the TMEDA donor ligand and then ZnE
and Ph2E are produced in the following thermolysis step at higher temperatures.

Obtained spherical ZnSe nanocrystals are highly monodispersed with sizes that depend
on the growth temperature. Relative to the position of the 480 nm (2.58 eV) absorption band
edge for bulk ZnSe, the absorption band edges of the ZnSe QDs are blue-shifted. The absorption
band shifts are 1.07, 0.49, 0.41 and 0.29 eV for QDs grown at 385, 367, 340 and 320 'C,
respectively. The band maxima in photoluminescent spectra are 387 nm (3.20 eV), 429 nm (2.89
eV), 443 (2.80 eV) and 451 nm (2.75 eV) for samples grown at 380, 367, 340 and 320 'C,
respectively (Fig. IA). In case of spherical ZnTe nanocrystals, similar behaviors were observed.
Relative to the position of the 548 nm (2.26 eV) absorption band edge of bulk ZnTe, blue shifts
are 0.53 and 1.31 eV for the nanocrystals grown at 180 and 240 C, respectively. The band
maxima in photoluminescent spetra are 451 and 377 nm for samples grown at 180 and 240 C
(Figure 2A). Larger shifts are seen for samples grown at higher growth temperature in both cases.
These results suggest that smaller nanocrystals are produced at higher growth temperatures
where more nucleation sites exist and relatively less available zinc chalcogenide precursor
molecules are present for each nucleus during the growth process.
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Figure 1. Spherical ZnSe nanocystals (A) PL spectra ZnSe ACs grown at (a) 385, (b) 367, (c) 340, and (d)
320 'C (B) HRTEM image of4.9 nin ZnSe NCs
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Figure 2. Spherical ZnTe nanocr'stals (A) PL spectra ZnTe NCs grown at (a) 240 and (h) 180 "C' (B) HRTEM
image qf 4.2 imn ZnTe NCs

High resolution transmission electron micrographs show that the zinc chalcogenide
nanocrystals are roughly spherical and that the particles within a single sample have relatively
uniform sizes. The average sizes of the ZnSe QDs are 2.7 (± 0.2) nm, 4.0 (± 0.35) nm, 4.4 (±
0.35) and 4.9 (± 0.29) nm for samples grown at 385, 367, 340, 320 'C (Figure IA) and ZnTc
nanocrystals have average sizes of 4.2 (+ 1.1) and 5.4 (:L 0.9) nm for samples grown at 240 and
180 'C, respectively (Figure 2B). Powder X-ray diffractometry (XRD) and selected area
diffractometry (SAED) reveal patterns corresponding to (111), (220) and (311) of the cubic
phase of ZnTe nanocrystals.

With the same conditions and procedures, the injection of the precursor
[Zn(TePh)2 ][TMEDA] into the mixed surfactant solvents of trioctylamine (20 nil) and
dimethylhexylamine (5 ml) leads to the shape change of the nanocrystals from spherical to
rod-like shape and after 2 hr gTay precipitates of ZnTe nanocrystals are obtained from initially
pale yellow solution at 180 C. It is believed that the combination of two different surfactants
provides rod micelles during one-dimensional crystal growth process.

TEM image of rod-like ZnTe nanocrystals show that the nanocrystals have relatively larger
size than spherical nanocrystals (Figure 3A). The diameters of the rod-like nanocrystals are
uniform with -25 nm and the lengths are several hundred nanometers (200 - 700 im) with
aspect ratio from 8 to 30. Figure 3B, C show SAED patterns of single ZnTe nanorod. Our
rod-like ZnTe nanocrystals have well defined single crystallinity with cubic phase according to
the electron diffraction study. The intensity of diffraction patterns varies depending on the
crystallographic directions; the intensity of electron diffraction spots is increasingly stronger
from 002 to 220 plane, which indicates that the ZnTe crystals are formed in unidirectional
crystal growth pattern of ZnTe 110 face.
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Figure 3. ZnTe nanorods (A) HRTEM image, (B) and (C) SAED pattern with zone axis

CONCLUSION

The results in this paper constitute a simple and convenient one-pot synthesis of size and
shape controlled zinc chalcogenide nanocrystals using a monomeric molecular precursor,
[Zn(EPh)2][TMEDA]. By varying the growth temperature or the choice of the templating
surfactants, the size and shape of the nanocrystals are controllable and quantum size effects are
observed.
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