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Weiliang Xu, Lowell T. Wood, and Terry D. Golding

Department of Physics, University of Houston, Houston, Texas 77204-5506, U.S.A.

ABSTRACT

We propose a generalized ellipsometric technique using a rotating sample. The ellipsometer
consists of a polarizer, a rotatable sample holder, an analyzer, and a detector. Fourier
coefficients are measured and used to extract the system's dielectric tensors and film thicknesses.
The main advantage of the technique is that all parts of the ellipsometer are fixed except the
sample, whose azimuth angle can be modulated. We show calculated responses to isotropic and
anisotropic materials as well as superlattices. Potential applications for characterizations of
anisotropic nanostructures are discussed.

I. INTRODUCTION

In a conventional rotating element ellipsometer, only one variable, i.e., the azimuth angle
of the rotating element, is changed in the characterization of an isotropic material. In current
generalized ellipsometers for characterizing anisotropic systems, however, either additional
variables [1], e.g., the angle of incidence and the azimuth angles of the polarizer (or analyzer)
and of the sample, are changed, or components not commonly found in a conventional rotating
element ellipsometer are needed [2,3]. Even in the simplest case ofuniaxial materials, two

variables, i.e., the azimuth angles of the polarizer and analyzer, are required if sets of T and A
are measured to determine the dielectric tensors of the materials [4]. Optimization of
ellipsometric setups with fewer variables involved in measurements is highly desirable in
situations where measurements are remotely controlled, since the reliability of the controls and
the accuracy of the measured data are improved. One such situation is the characterization of
samples grown in space. In this paper we present a theoretical development and show that
changing only the sample's azimuth angle is sufficient to determine dielectric tensors and film
thicknesses of arbitrarily anisotropic systems. Instead of T and A, the intensity dependence on
the sample's azimuth angle is measured. Two approaches for analysis are proposed to detennine
the dielectric tensors and film thicknesses from the measured intensities. Popular conventional
ellipsometer setups, e.g., polarizer-compensator-sample-analyzer (PCSA) or polarizer-sample-
analyzer (PSA), can use this approach to characterize anisotropic systems by keeping all
components fixed except the sample.

II. THEORY

In this section, we study the dependence of intensity on as, the sample's azimuth angle,
to permit extraction of the dielectric tensors and film thicknesses. For an n-layer anisotropic
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system, following the same procedure and coordinates setup as in Refs. [4,5], the Jones matrix
(r) for reflection ellipsometry is

r,(T27 - TT 0)/(7;T22 - T2T21), ()(e T= T1 I ,- T1 12) (T 2 I2T 1(2)

rý, = (T4,T2 -T4 2T2,)/(T,,T2 -TT 2, ), (3)

I", = (T42rH - T47T72)/( TI T22 - T12 T2, ), (4)

where (7) is the transfer matrix of the system. The formula for calculating (7) can be found
elsewhere [6]. These expressions establish the relationships between the Jones matrix and the
system's dielectric tensors and film thicknesses. For layer i, if we use the diagonal tensor (ei)[,
H=1, 2, 3, to represent the dielectric tensor with respect to its principal axes. O,=(O, i, 'P,.i, Oii,
'Pu, (Puj) for the Euler angles of the frame of principal axes with respect to the laboratory frame for
the real and imaginary parts of the dielectric tensor, and di for the thickness, (7) is completely
determined by (eI)i, O, and d,, (i=I .... n).

If the PSA setup is used, the intensity after the analyzer is

l, =1lk, lcosao+,+I, sin ap )cosoa, +(r,> cosox,+r,, sin a,)sina 2 , (5)

where Id is the intensity reaching the detector, I, is a constant, and a, and a, are the azimuth
angles of the polarizer and analyzer, respectively.

If a, and aA are fixed, changing us, i.e., rotating the sample, leads to the change of

', = (, ,',,). Recall that the transfer matrix (7) depends on 0,. Therefore, the Jones matrix

changes with as and so does the intensity. However, the dielectric tensors on the principal axis

frame and the Euler angles B, and (p, remain the same. Substitution of Eqs. (1) -- (4) into Eq. (5)

gives Ia function h of the dielectric tensors and film thicknesses. That is,

Id(aZS)= Iph((Ej)j, 0_,., .ji~st,; _;i Oi+a ,), (6)

where the underlined parameters do not change when the sample rotates, and ',-i, and O,;u are the
initial angles for -,.i and Oiu.

From Eq. (6), if the total number of(Ej)1 , O,, 0 ,.i-o, T,.i, OiB,. 'u., (pi, and di is k, and Ir, is
taken as unknown, they can, in principle, be determined by k + 1 independent equations between
Id and [, (E1)i, 0,-., O,.o, q,.i, OiB, 'iPu, qpii, and di. In the rest of this section, we discuss tvo

approaches of changing as to establish in (in > k + I ) equations between l,1 and ,, (e,)i. 0, i, 0, i,
(Pi, Oii, 'Pus, (Pii, and di.
Approach one:

The intuitive way to establish ni (in _ k + I) equations between I,1 and Jr, (EA), O,,, Ono,

(p,-i, OiB, O,;0, (pij, and di is t set as to in different settings. If the intensities I(as, ), a(2),

Idj(a!,,) have been measured, in equations are set up. They are

Ih(()j, Qi, -i+asi, VO,'i, i, ._.p+Oasi, Vii, di)- Il(Os ), (7)
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Iph((fj)j, 19,, .O,.go+as2, Lp,-j, Olij, Ax)+as2, -Q,, d;)= Id(aS2),(8

Iph((_,Q)j, O'j,j -jo~s , .ij, ýjOii f atO ,S, i, di= d(OaSm). (9)

To solve these equations for [), (el)i, 0,-i, (0,.-1, p, i, Oiio, (pii, and di, a test function is
introduced:

Err = • [ph((E,)i ,O,,Orio + +asj,(p,, 0,,, ,i 0 + a0 ,(p,, d1 ) -/,, (%,)],/a (10)
j--l

where a, is the standard deviation for ld(a 01). Ideally, if there are no errors in the

measurements of I(,, Eq. (10) reduces to Eqs. (7) - (9) if Err is minimized to zero. In practice,
errors exist in Id, but Err can be reduced to a minimum value. The I, (E),i, O,.i, (Pri, (o,.i, 00, (jiio, i
and di that minimize Err can be taken as the true values. We outline the algorithm for the
minimuzation and discuss the error distribution in determining (Ec)i, 06, (P,.o, (p,-, Oil, Piio, (pai, and
di.

For clarity of notation, we use xi, 1 = 1, 2, ... , k, k+- to represent the k variables of (Ec)i,
O,.i, P,.jo, (,.i, Oi,, (POio, (poi, di, and Ip, and define a vector XT=(xi, X2 ... , xki,), where the superscript T
denotes the transpose of the column vector X. When Err reaches its minimum,

(DErrlPx 1), = 0, l= 1, 2 ... , k+l, (11)

where the subscript t means that xi, i.e., (Ea)j, 0,.,, O,-,, p,0 , o,,, 0 Oio, (pj,, and di, assume the true
values of the dielectric tensors and film thicknesses. Using matrix notation, Eq. (11) can be
simply denoted as

VErr = 2AT H=0, (12)

where

H=(h, ,12 '...h,,h)
T, (13)

h, =1Ih((c,) ,0,6,,, 0 +aj, P,,,0,PO0 ± + asj, To, d,) -Id (aj) ,j=l,2,..m, (14)

Aj, = (ah,/ax,),/u] j,=1,2,...,,; 1=1,2 ... ,k+l. (15)

Near the minimum of Err, H can be linearized as H = H, + AAX, and substituting it into Eq. (12)
obtains

AX =-(irA)' ATH, =-MATH,. (16)

Eq. (16) gives an expression for changing X recursively to minimize Err. The standard deviation
ofxi, H=1, 2, ... , k, k+l, determined with the above algorithm, is [8]
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a' = MY (17)

Approach two:
Instead of setting a sample to different discrete angles, the sample can be rotated at a

constant frequency w. That is, as = wot. In this case, Eq. (6) can be exprcsscd as

/,( (ot) = I,, L(a, cos lcot+ 1,, sin lot), (18)
I

where al and b, are the Fourier coefficients.

If nz=2j+l, in _> k + I, Fourier coefficients ac, a , bi ... , a1 , b6, arc measured, in equations of (F/)i,
0,.i, ,.io, (p,.i, Oi, Oio, (oj, and di can be established. They are

tI,, J h( (e,), li,, +a, (p,,,iiQo,, +a,' q,,d, )da = a,, (19)

2

tip- h((e,),,o, ,,, + a1qr ,o ,C io +a,( , ,dj cos.jada = a,, (20)

2 t

t 7-p h((c,),,Of,, 0  +a,(p,,, ,•,, + a, ,,d,)sinjada = b, (21)

where t !9 27c is the smallest period of function h.
To solve Eqs. (19) - (21), a test function

2fohcosladcx , 2fhsinlada
Err=t J ) -a, J + (22)

is introduced, where a, are the standard deviations for the Fourier coefficients.
The algorithm outlined in Approach one can be employed to solve Eqs. (19) - (21), if the

intensities are replaced by the Fourier coefficients and the function h replaced by the Fourier
integrals. Eq. (17) can also be used to estimate the error distributions of (ei,, 0,,o, (Al, Oil, 01o,,
(Pu, and di.

If j is large, direct measurements of the Fourier coefficients may be inconvenient. In this
situation, the intensity dependence on the sample's azimuth angle can be measured. With this
relation, the Fourier coefficients can be obtained numerically. It should be noted that if t<2)r, all
as selected in Approach one should not be different by t. If t=0, i.e., ld is constant, only a0 is
meaningful. In this case, this method fails.

111. MODELS CALCULATION

In this section, we prescribe the dielectric tensors and film thicknesses of some common
structures and conduct forward calculation for the intensity dependence on %arple's azimuth

C4.42.4



angle. The purpose of the study is to show that different structures possess different relationships
between intensity and sample's azimuth angle. Therefore, from a measured intensity dependence
on sample's azimuth angle, a backward calculation can extract the dielectric tensors and film
thicknesses by use of the two approaches described in the previous section.

In the study, we assume that the angle of incidence is 70' , and the wavelength is 600nm. All
materials are transparent for simplicity. A PSA setup is used and a, = aA = 45', An isotropic

material, two bulk anisotropic materials (uniaxial and biaxial) are studied. The isotropic and
uniaxial materials are also used as the substrates of a superlattice structure, which is 20 periods
of a two-layer structure on a substrate. They can be denoted as ABAB... ABC, where A and B are
biaxial films, and C is substrate. The properties of these materials are listed in Table I. Relations
between intensities and sample's azimuth are shown in Figure 1. Parts of the Fourier coefficients
are listed in Tables It.
Figure 1 shows that the intensity relationships are different for different structures. Table II
shows that except for isotropic materials, all other structures contain more non-zero Fourier
coefficients than unknowns. Therefore, Eq. (22) can be used. For isotropic materials, Figure 1
shows that the intensity is a constant. As stated in the above section, this method fails in this
case. One interesting observation is that in Figure 1, two superlattices show difference mainly
near extremum positions. However, Table It shows that all Fourier coefficients have distinct
difference. This fact implies that if Approach one is used, as has to be set near extremum
positions so that the difference can be detected. However, Approach two does not have this
limitation.

Table I. Refractive indices of different materials along their principal axes, Euler angles of the
principal axes relative to the laboratory frame, thicknesses of the materials and number of
parameters that can be determined.

n I n2 n3 0 00 (P d (nrn) k
Isotropic 1.8 1.8 1.8 any any any oo I
Uniaxial 1.8 1.8 2.0 20 60 any 00 4
Biaxial 1.8 2.0 2.2 20 60 10 0 6
Layer A 1.6 1.7 1.8 45 35 10 300 7
Layer B 1.5 1.6 1.7 30 20 30 , 600 7

Table II. Fourier coefficients al and b, for the intensity I, (ox) = Iv I(a, cos lwo t+ b, sin IMot).

Lattice 1 (resp. 2) is a 40-layer periodic superlattice on an isotropic (resp. uniaxial) substrate.
ao a,, bi a2, b2  a3, b3  a 4, b4  a5, b 5  a6, b 6  a7, b7  a8, b8

(10-3) (10-1) (10-5) (10-6) (10.6) (10-6) (10-6) (10-6)

Isotropic .2665 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Uniaxial .2581 6.235 2.045 3.500 -2.000 0,0 0,0 0,0 0,0

-10.80 3.542 0 0
Biaxial .2492 3.867 17.89 9.900 11.00 -1.000 2.000 0,0 0,0

-4.329 16.44 -1.100 128.0 -1.000 -2.000
Lattice 1 .2913 21.40 -22.87 914.0 10290 3050 12930 -35210 -16710

5.696 16.50 4113 5194 10450 -619.0 -29820 -5554
Lattice 2 .2936 23.38 -26.12 852.0 11770 3333 10610 -34730 -17730

12.77 12.67 3941 4137 11640 312 -29630 -4792
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0.8 ,- -A uniaxial material ...... A biaxial material
0.7 --- Supcrlattice on isotropic substrate

0.6 Superlattice on uniaxial substratc
0. - An isotropic material
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Figure 1. Intensity dependence on sample's azimuth angle for (1) an isotropic material, (2) a
uniaxial material, (3) a biaxial material, (4) a 40-layer periodic superlattice on the isotropic
substrate, and (5) a 40-layer periodic superlattice on the uniaxial substrate.

IV. SUMARY

In this paper, we present a theoretical development to optimize a generalized ellipsometer
so that only the sample's azimuth angle needs to be changed in the determination of the dielectric
tensors and film thicknesses of a arbitrarily anisotropic systems. Five models arc calculated as
examples.
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