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An Accurate Algorithm for Minimal Partial Realizations

Adam W. Bojanczyk, Tong J. Lee, Franklin T. Luk
School of Electrical Engineering, Cornell University, Ithaca, New York 14853

ABSTRACT

We present a simple matrix representation of the Berlekamp-Massey algorithm for the minimum partial re-
alizations problem, and show how pivoting can be added to the algorithm to improve numerical accuracy of the
method.

1. Introduction

The problem of minimal realization of linear dynamical systems from input/output data has much practical
importance. Many of realization procedures that have been developed rely on the solution of a Hankel system
of linear equations. The Berlekamp-Massey (BM) algorithm [1], [6] is a fast Hankel linear system solver which
originated in the field of coding theory. The algorithm is little known in the scientific computing community. One
reason for its obscurity may be that the algorithm seems to lack a natural representation in matrix forms. Attempts
to alleviate this situation can be found in Kung [4] and Jonckheere and Ma [3]. In this paper, we give a related but
perhaps simpler, way to present the algorithm. We show how our presentation leads to a pivoting strategy that
improves the numerical accuracy of the computation. What is more, unlike other pivoting schemes for Hankel and
Toeplitz matrices, our new algorithm never requires more than 0(n 2 ) operations.

Throughout this paper, unless otherwise stated, all matrices are n x n and all vectors have n elements. Wherever
convenient, we will use upper case Latin letters to denote matrices, lower case Latin letters to denote vectors, and
lower case Greek letters to denote scalars. A Hankel matrix H has the form:

/ i ' 72 " " 'In

q2 q3 7.-/+1. (1.)

77n 17n+1 """ 772n - I

and we are interested in solving the matrix equation:

Hx = b. (1.2)

By rearranging its columns or rows, the Hankel system can be transformed into a Toeplitz system. For example,
we can re-order the columns of H from the last to the first, and get the Toeplitz system of equations:

q1n In-' 71j \ / Xb,
n~n +1 nn 772 Xn1 = b2(1):1 :(1)

\]2n-I n12n-2 77n n / b

Similarly, we define the Yule-Walker problem for the Hankel matrix to be:

q2 13 'i... ) - . (1.4)

ni ~i-i- U ' 2-1 q]2i

Many algorithms for solving (1.3) have been proposed, but most of them, e.g., Levinson [5], may fail to calculate
an accurate solution if the Toeplitz matrix has ill-conditioned principal submatrices. Interestingly, our numerical
experiments indicate that our new algorithm may still work very well under these circumstances. There is much
recent interest to introduce pivoting to Toeplitz algorithms; see, e.g., [2].

This paper is organized as follows. Section 2 describes how one solves a Hankel matrix equation via the BM
algorithm. Section 3 explains how the BM algorithm triangularizes a Hankel matrix that is strongly nonsingular.
Section 4 presents our new numerical pivoting strategy. Section 5 considers the case of a general Hankel matrix.
The last three sections contain examples that detail our numerical experience.
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2. Solving a Hankel Matrix Equation

In Section 3, we will show how the Berlekamp-Massey algorithm constructs an upper triangular matrix R to
reduce a Hankel matrix H to a lower triangular matrix L:

HR = L. (2.1)

The triangular matrix R also has a unit diagonal. From this factorization, the Hankel system (1.2) can be easily
solved. Now,

(HR)T = LT and HT = H

imply that
RTH = LT.

Multiplying both sides of (1.2) by RT, we get
LTx = R Tb. (2.2)

Hence we first apply RT to b, and then solve the triangular system (2.2). So, if the factorization (2.1) is available,
a total of n2 multiplications is required to solve (1.2). It is worthwhile to point out here that the matrix R needs
not be upper triangular. Even if R were a dense matrix, one could still solve (1.2) via (2.2), albeit at a cost of an
additional n2 /2 multiplications. When we introduce pivoting in Section 4, we may destroy the triangularity of R.

3. Hankel Matrix Triangularization

For this section and the next, we assume that the Hankel matrix H is strongly nonsingular, i.e., that all its
principal minors are nonzero. This assumption simplifies our presentation, and will be removed in Section 5. For
convenience, we need a "shift-down" matrix:

~(0 0

where In-i is the identity matrix of order (n - 1). Thus,

X2 X1

Xn-i Xn-2
n Ln-

Note that

HZ =ZTH + 0.1 (3.1)

-Z(2n-1 n

?7n+1 "" 12n -1 0 /

We now show how the BM algorithm computes columns of the two matrices R and L of (2.1) recursively. We
proceed by induction, and use the usual notation representing the columns of the three matrices:

H = (hi, h2, hn),

R = (r, r2,...,
L = (11,,12,'" In).
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The first two columns of the matrices R and L are readily available:

r, = ( , r2= 0 (3.2)

and
11 = hi , 12 = h2 - (772/711) hi. (3.3)

Hence the top element of 12 equals zero. Suppose now thet the four columns r3 , rji+, 1. and /j+l have already been
computed, and that H(rj ri+ ) = (1i 1.+1 ). (3.41)

Let us denote the elements of rj+l and 1j+j by

(P1 0
P2 0

0rj+ = Pi and 1+1= 01 A

0 A2

o

From the assumption of strong nonsingularity are asumi; g that .. -4L n Al IofC, a~ "1 a v 7

b+2 = Zrj+l, (3.5)

and

ii+2 = Hj+2. (3.6)

That is,
H ( rj rj+! rj+2 ) 1= j 1j+ li j+2 )

The new vector 4+2 is easy to compute. From (3.1), it is seen that

4+2 = ZTIj+ +  e., (3.7)

where
= ?7n+lPI + 9n+2P2 + + qn+jPj + 77n+j+i*, (3.8)

and e,, denotes the last column of the n x n identity matrix. In words, the vector i,+2 is formed by "upshifting"
each element of 1,+1 by one slot and piacing the scalar in the n-th position. A picture is worth a tho-isand words!
Hence we get

0 0 0

0 0 0
x 0 A,

(1i 1j+1 t i+ ) = x Al A2  (3.9)
x A2  A3

x An-j- A,_j
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We now zero out the two leading nonzero elements of 41+2 by using appropriate multiples of the leading elements

of lj and lj+ . That is, we post-multiply the n x 3 matrix of (3.9) by the two 3 x 3 elimination matrices E(0) and

E ), where

E( ) =  1 , E()=(0 1 2 (3.10)
0 0 0 1

and (0), (0) denote the corresponding multipliers. Finally,

(lj 1+1 lj+2) -(1j 1j+1 i+2 E(°)E 2 , (3.11)

and
(ri ry+1  r1 +2 ) -- (r, rj+l b+2 E, l ( (3.12)

Note that the (j + 2)-nd component of rj+2 is nonzero. Hence from the strong nonsingularity assumption, the
(j + 2)-nd component of lj+2 is also nonzero. Thus the multipliers are well-defined.

Let us perform an operation count. The time-consuming steps include the calculation of the inner product (j
multiplications ), and the multiplication of a scalar into the four vectors rj, r,+,, 1, and li+l ( 2n multiplications).
Hence a total of 5n 2/2 multiplications is required to compute the decomposition (2.1).

4. Pivoting

One may have noted that the magnitude of two multipliers m, and m2 of (3.10) can be arbitrarily large. In
response, we propose a simple scheme of eliminating the leading nonzero element of either 13 or i,+2, using either

E(°) or El), respectively, where

E1)(- 1 0). (4.1)mM.I  0 1
The important point is that either m) or m,1) must be at most one in absolute value, in order to keep the

overall process stable. We thus choose either E(0) or E(1) to achieve a better numerical accuracy. Our approach is
somewhat similar to a pairwise pivoting scheme commonly used in systolic computing. Similarly, to eliminate the
other nonzero element, we would choose among E 0) ,E1) E 2 or E where

1( (3) (3) 0
() rol 0 ) 0 , = ( . (4.2)

1 0 1 0)

The location (ij) of the multiplier represents the non-zero leading entry of column j is to be eliminated by that
of column i.

The column updating proceeds essentially as before:

(1j 1j+1 1j+2 (1Ij j+1 i+ 2 ) 2 1 2 , (4.3)

and
(ri rj+1 rj+2 )--(ri rj+1 rj+2 ) k1EP2, (4.4)

where 21 equals E(0) or E(1) and 2 2 equals E °), E(1) E(2) or E( ) . Two important observations are as follows-
First, the resultant matrix L stays lower triangular, but the previously upper triangular R may have gained two
nonzero subdiagonals. Second, our pivoting scheme increases the number of multiplications by only 0(n), i.e, the
total number of multiplications is still 5n 2/2 + 0(n).
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5. General case

Recall that under the strong nonsingularity assumption, we knew that the (j + 1)-st element of lj+j must
be nonzero. We now remove the assumption that the matrix H is strongly nonsingular. During the elimination
process, we may get additional leading zero elements in j4. -. For our discussion in this section, let us assume that
both (j + 1)-st and (j + 2)-nd elements are zero but that the (j + 3)-rd element is nonzero. Hence the procedure
described in Section 3 would not work because there is a gap in the nonzero structure in (3.7). Now, let

P1 0

0

rj+1 = Pj+1 and lj+ = 0
0 0
0 A3

o

Define some new vectors by
b+2 = Zrj+l, i+3 = Zbj+2 , 93+4 = Zi +3 , (5.1)

and
4+2 = H +2 , j+3 = H r+ 3 , j+4 = Hi+4. (5.2)

That is,
H(r rj+l p+2 r1 +3  1+4 ) =(j l+1 i1+2 j+3 5+4)

From (3.1), the new vectors 4+2, 4+3 and 4+4 are calculated by

41+2 = ZT j+1 + 6e.,

4+3 = ZT 4+2 + 2en, (5.3)

4+4 = ZTh4+ 3 + 3en,

where

1 = 1n+lPI + 'ln+2P2 + + n+i+IPj+I,

62= n+2Pl + ln+3P2 + + lln+j+2Pj+l, (5.4)

3 = qn+3P1 + ?ln+4P2 + ..'"+ 'ln+j+3Pj+I.

Indeed, the million words picture looks like:

0 0 0 0 0

o o 0 0 0
x 0 0 0 A3
x 0 0 A3  A4

(Ij lj+1 i1+2 ij+3 1+4)= x 0 A3  A4  A5  (5.5)
x A3  A4  A5  A6

x An4j_ 2 An-j-I An-j

x ,,_ij 6._ I
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As described in Section 4, we would like to pivot and eliminate the above matrix so that each row contains an
unique pivot element. The elimination matrices in this case are four 5 x 5 matrices, each with all l's on the diagonal
and a multiplier in the (i, j) location. Same as before, the jth leading non-zero entry is to be eliminated by the ith
column, and all the multipliers in the elimination are less than one in absolute value.

In practice, we work with finite-precision arithmetic, so an exact zero would hardly happen. In order to tell
if we are getting any additional zeros in the column of 1.+1, we need to choose a threshold, such that any number
smaller (in absolute value) than the threshold is regarded as a zero. If this is the case, we will then apply the
technique in this section to deal with the situation.

6. Numerical Examples

We consider the Hankel matrix equation (1.2) and the corresponding Toeplitz matrix equation (1.3). We
compare three procedures: the BM algorithm for (1.2), our new pivoted BM algorithm for (1.2), and the Levinson
algorithm for (1.3). We construct two sets of examples, the first where BM would fail and the second where
Levinson would fail. Specifically, we tinker with the 2 x 2 leading submatrices of the Hankel and the corresponding
Toeplitz matrices:

H~2 (2 71 q2 and T~2 (2) r nn qn (6.1)
772 q3/ ) (nn+1 Un )

In Example 1, the submatrix H(2) is ill-conditioned but the submatrix T( 2
1 is not, while in Example 2, the situation

is reversed. In Example 3 both submatrices are ill-conditioned. Whereas the BM algorithm fails in Examples 1
and 3, and the Levinson algorithm fails in Examples 2 and 3, our new algorithm works well on all three sets of
equations.

For all examples in this paper, we choose the left hand vector b such that the solution vector z =
(1 1 ... 1) T. To compare the algorithms, we calculate II X - - 112, where : denotes the computed solu-
tion. We ran our examples using MATLAB on a Sun Sparc station. In this section we choose as a threshold,
C 1 H 112, where c (; 2.22.10-16) denotes the machine precision. We use (M) to denote the condition number
with respect to the 2-norm of a matrix M.

Example 1. This example shows why pivoting is necessary for the Berlekamp-Massey algorithm. Let

1-624 8
2 4 8 4 and )/ 1 -) =2.

Hi= 4 8 4 2 an i2 4
8 4 2 1-6)

The submatrix of H(2 ) is ill-conditioned when 6 is small, and is singular when 6 is zero. As expected, the BM
algorithm delivers worse accuracy as we decrease the size of 6. The matrix H, is well conditioned, with (Hj) = 5.6.
However, the BM algorithm determines an L that is ill-conditioned, contributing to the loss in accuracy when one
solves (1.2) via (2.2). On the other hand, our new algorithm computes a very well-conditioned L.

Table 1. Error Behavior for Example I

BM Pivoted BM Levinson

6 r-(L) IlX- i12 K(L) 1- X 112 1 X - i 112

10-2 2.0. l05 9.98. 10- 1 4  23 3.24. 10- ' 1.11 . 10-16

10- 4  2.0. 10' 4.96. 10- 12 23 3.24" I0 - 15 0.00. 10 - 16

10- 6 2.0. 1013 4.96. 10- 0 23 3.24. 1O
-

15 4.00.10 - 16

10- 8 2.0. 1017 1.98. I0 - 7  23 3.24. -10s 1.11 • 10-16
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Example 2. This is an example where the Levinson algorithm fails because the submatrix 22) is ill-conditioned:

0 2- 1- 1(2 11- 6 1 1- 6 and 2 1-\
H 2 =( 12 6 1 1-6 6)I- 1j"

1 1-6 2 0

This example also portrays a unique property of the BM algorithm, that it still works even though the (1,1) element
of the matrix equals zero. However, the algorithm may deliver a poor solution if the (1,1) element is non-zero but
small in size. Again, here the Hankel matrix is well-conditioned, with n(H 2) = 7.3. Both our new algorithm and
the BM algorithm calculate well conditioned L.

Table 2. Error Behavior for Example 2

BM Pivoted BM Levinson

6 tc(L) II Xz - i112 x(L) I X - 1 112 II X - i 112

10- 2 36 1.87. 10-' 5  5.3 3.14. 10- 16  6.08.10 - 's
10- 4  34 1.85. 10- 1s 5.3 6.28. 10- 16 3.07. 10- 13

10- 6  34 4.15. 10- 16 5.3 5.87. 10-16 9.32. 10- 11
10- 1 34 2.24. 10- 5  5.3 1.11.10 - 16  1.10.10-1

(2)
Example 3. This is an example where both BM and Levinson algorithms fail because the submatrices H3

and T2) are ill-conditioned:

1-6 2 4 1-6 1\2 4 1-6 1 1-6 ()=(1- 2 1 1-b
H31 4 1b 1 1 4 H )

1( 6  1 1 -6 4 2 2 4 a 1-6 1

1 1-6 4 2 1-6
Again, here the Hankel matrix is well-conditioned, with K(H 2) 31. Our new algorithm calculates a "good" L,
but the BM algorithm determines an L that is ill-conditioned.

Table 3. Error Behavior for Example 3

BM Pivoted BM Levinson

6 tc(L) I Z - 112 tc(L) 11x - 112 II x - 112

10- 2 7.0. 104 9.45. 10-11 279 2.75. 10- 14  1.12. 10-13

10- 4  7.0. 108 4.63. 10-15 288 4.63 . 10-' 2.52. 10-"
10- 6 7.0. 1012 1.15. 10- ' 4  288 1.15. 10- 14  3.85.10 - 9

10- 1 3.8. 1016 8.67- 10- 14  288 8.67. 10-14 7.21 • 10"

The three examples have shown how our pivoting scheme works better than the other two conventional al-
gorithms. However, when the size of the matrix H increases, roundoff errors may accumulate so that it becomes
hard to define a numerical zero. If we choose a small threshold, such as the one we have used, then the condition
number of any principal submatrix may become as large as the inverse of the threshold and a significant loss in
accuracy may occur. From our experiments, we observed that the accuracy of the solution is proportional to the
largest condition number of any principal submatrices.

On the other hand, if the threshold is large, we effectively work in a lower precision, so the factorization will
have limited numerical accuracy. Therefore, in the next section, we experiment with a compromised threshould
value. To compensate for the loss in accuracy due to this choice of a larger threshold, we adopt iterative refinement
at the end.
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7. Further Examples

In this section we show how our pivoting scheme works when the size of the matrix H increases. We observe
that with an increase in dimensions there is a danger of underfiow. Hence some form of normalization is required.
Our choice is to normalize L to make the diagonal elements all ones, so that underfiow can be avoided.

We construct our matrices from the Toeplitz examples in Sweet's paper [7], and select an iterative refinement
scheme for improving the accuracy of the initial solution x(°):

1. Compute r(') = Hx(i) - b.
2. Solve LTy - RTr(i).

3. Update x(i+1) = x() - y.

The criterion for ending the iterative refinement is when

11 r() 112< 10- c. H 112 II (i 112-

The threshold for the examples in this section is chosen as 10 -/7. 11 H 112.

Example 4. We pick an example to show how iterative refinement improves our solution, and how the number
of refinements is affected by the conditioning of principal submatrices. The order-6 Hankel matrix is

3 2 6 1 195/14 +6b 8
( 2 6 1 195/14+ b 8 4

H4 = 6 1 195/14 + b 8 4 -34
1 195/14+6 8 4 -34 5

195/14 + 8 4 -34 5
8 -34 5 3

For 6 smaller in the magnitude than 0.5, the matrix is well conditioned with tc(H 4 ) less than 100. The threshold is
approximately equal to 6 10 - . For 6 = 0 the order-3 principal submatrix is singular. Starting with 6 = 10-2 and
then decreasing it , we can make this submatrix progressively worse conditioned without significantly changing the
condition number of H4 .

Table 4.1. Error Behavior for Example 4

BM Pivoted BM BM Pivoted BM

6 10-2 10-2 10- 4  10- 4

amin(H (3))  1.36 10- 3  1.36 10- 3  1.36 .-10- ' 1.36 10- 5

x(L) 2.29.107 197 2.29.1011 197
n(R) 2.29- 107 182 2.29- 10" 182

11 X - i(O) 112 1.06. 10- s  1.33- 10- 13  6.59.10 - 5 2.94. 10-"
II X - i(') 112 7.61.10- 16 7.84. 10- 'o 2.88.10 - '5
11 X - i(2) 112 5.27. l-1 5

#Refine. 1 0 2 1
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Table 4.2. Error Behavior for Example 4 (Continued)

BM Pivoted BM BM Pivoted BM

6 i0- 5  10- 5  10- 6 10-6

gmin(H (3)) 1.36. 10- 6  1.36. 10-6 1.36. 10- 7  1.36 .10- 7

K(L) 2.29.1013 197 214 122
X(R) 2.29. 1013 182 202 53

11 z - i(o) 112 1.23. 10- 2 1.12- 10-10 1.47. 10- 7  2.11. 10- 7

1 Z - i(I) 112 5.93. 10- 6 3.84- 10-'- 8.89.10 - 14 1.55 .10 - 13

11 X _ (2) 112 2.71.10 - 9  1.37 . 10 5  4.29.10 - '5

11- i 112 1.24. 10- 12

11 X _ I12 3.67. 10-15
#Re fine. 4 1 2 2

Table 4.3. Error Behavior for Example 4 (Continued)

BM Pivoted BM BM Pivoted BM

6 10- 1 10- 8  10- 10 10- 10

Omin(H (3) ) 1.36. 10-  1.36.10 - 9  1.36. 10- " 1.36 . 10- 11
tc(L) 214 122 214 122
x(R) 202 53 202 53

11 X - i(o) 112 1.47.10- 9  2.11.10 - 9  1.47. 10-11 2.11 . 10- 11

II a (1) 112 2.51 . 1015 3.73. 10- 5  5.87 . 10- 16 3.92.10-15
#Re fine. 1 1 1 1

Note that the pivoted BM algorithm always produces factors R and L that are better conditioned than
those produced by the BM algorithm without pivoting. As a consequence, the first approximation to the solution
computed by the pivoted BM algorithm is more accurate than that computed by the BM algorithm. When the
the smallest singular value of the order 3 principal submatrix becomes smaller than the threshold, both algorithms
behave in a similar way.

Example 5. We construct a 13 x 13 Hankel matrix H5 whose first row is given by

11-13 = (-15,10,1, -7,-2, -5,-14.2766, -25.5087, -48.8789, -96.8384, -188.8878, -1,5),

and the last column by

q13-25 = (5,1, -3,12.755, -19.656,28.361, -7,-1, 2,1, -6, 1, -0.5 )T,

the threshold is 5.35 .10
- 5 .

The matrix is well conditioned in that ,z(Hs) = 89.0, but it contains five consecutive ill-conditioned submatrices
4) to H(' ) ie. orders 4 through 8. The smallest singular values of these five principal submatrices are 2.36 -10- 5 ,

5.23-10- 5 , 5.33.10 - 5 , 5.23-10- 5 and 2.36 10- 5. The effect of encountering a sequence of ill-conditioned submatrices
is felt later in the elimination process and is manifested by a severe loss in accuracy in the subsequent columns of R
and L. Hence, some form of restoration is required for high accuracy. A way to bring back the lost information is to
recompute the most recent columns of R by solving a Yule-Walker problem as in (1.4), utilizing the decomposition
we already have at hand. In this example, columns 10 and 11 of R are recomputed, so that again the process
restarts from a new and accurate point. The results are presented in Table 5. Notice that the two factor matrices
produced by BM algorithm are nearly singular.
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Table 5. Error Behavior for Example 5

BM Pivoted BM

tc(L) 3.93. 10+ 13  1.33 .10+ 3

x(R) 3.93- 10+13 1.24- 10 + 3

11 X - i(o) 112 6.58.10- 2 3.29.10 - 4

11 X - i(1) 112 2.93. 10-  2.11.10 - 9

X- (2) 112 8.82. 10 -  4.18 .10
- 14

X _ 112 1.58.10 - 13

#Refine. 4 2

Example 6. We extend the previous example to size 50 x 50 by appending random numbers. For this example,

the Hankel matrix is moderately ill-conditioned with ic(H6 ) = 1.97. 10+ . The results are shown in Table 6.

Table 6. Error Behavior for Example 6

BM Pivoted BM

,¢(L) 4.01 .10+ 13  1.33. 10+ 3

!(R) 4.01. 10+13 8.71. 10+ 4

S- (O) 112 5.86. 10- 1 2.44.10 - 3

1 X - i(1) 112 2.39- 10- 3  4.54. 108
I X _ i(2) 112 7.46. 10- 6 9.86.10 - 13

1 X - i(3) 112 6.87. 10- s  5.58- 10- 14

1 X - i(5) 112 1.17. 10- 12

#Refine. 5 3

8. Conclusion

We believe that the Berlekamp-Massey algorithm works well when the Hankel matrix is positive definite and
well-conditioned, so that none of its principal submatrices is ill-conditioned, and no pivoting is necessary. In
general, consider the Hankel matrix as a moments matrix with respect to certain weights. These weights are not
necessarily all positive, and thus we may need to deal with Hankel matrices that do not have positive definite
property. Strategies such as pivoting, normalization and gap-jumping are required in this case.

For the previous examples, we adopt a scheme that combines both pivoting and normalization. To generate a
new column of the triangular factor, say column i, we combine it with columns i - 1 and i - 2. Since normalization
is performed after each new column is generated, and column i is a shifted version of column i - 1, so all the three
columns have a 1 as the leading nonzero element. Therefore, no pivoting is performed in the first phase of column
combination. After columns i and i - 2 are combined, pivoting takes place in the second phase, in which columns
i and i - 1 are combined. Both steps are crucial to the stability of the procedure. Pivoting prevents multipliers
from being too large, while normalization keeps the norm of the columns from underflowing.

Since we remove the constraint of positive-definiteness, a well-conditioned Hankel matrix may have several
ill-conditioned submatrices. The choice of the threshold is a subtle issue, and from the previous examples, we see
that a compromised threshould value, such as 10 . V.. I H 112, may be a good choice.

Whenever there is a sequence of ill-conditioned principal submatrices, i.e., a gap, we simply shift up the
previous column of L until the next well-conditioned submatrix is encountered. Thus, we avoid the computation
within the gap by 'jumping over" it. Two columns of L are recomputed right after the gap, so that the errors in
the factorization caused by the jumps are confined within the gap and do not propagate to the succeeding columns.
Therefore, after a few steps of iterative refinement at the end, all the errors in the solution (not the decomposition)
will be corrected and the solution will be accurate to machine precision.
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Another possibility to deal with the gap is to perform a LU decomposition with partial pivoting instead of
jumping over it. But the worst case for this approach requires O(p2n) operations to decompose the part of the
matrix corresponding to the gap, in contrast to O(pn) operations for the gap-jumping approach, where p denotes
the size of the gap.
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