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A stochastic model of land clutter visibility and of 
terrain screening of targets, with particular 
application to low-flying targets under surveillance 
by a microwave land-based radar system, is 
described. 

The model is non-site-specific, but detailed. It 
allows radar performance measures such as the mean 
length of track to be obtained analytically, without 
averaging large numbers of site-specific simulations 
or requiring high fidelity terrain data. The 
trajectories of terrain-following targets are described 
in terms ol ensembles of Markov processes. The main 
dependencies of the model are on: 

terrain relief; 
radar height; 
target altitude; 

distance of closest approach between the target 
and the radar. 

The model can be used to generate simulated clutter 
maps and target screening diagrams, and indeed this 
is done to compare the model results with 
experimental data. However, the main aim is to 
predict the effects of target screening and land clutter 
directly from the model, rather than through large 
numbers of simulations. The equations which can be 
used to derive such predictions are given, and 
applied to a simple case: the time at which an 
incoming target first enters a cluttered cell. This 
approach to such calculations is extremely 
computationally efficient. 

Introduction 

In performance assessments of ground based air 
defence radar systems, the quantity of interest is 
usually a general measure such as the mean track 
length. Ultimate limits upon such performance 
measures are provided by certain characteristics of 
the terrain: in particular, terrain screening and land 
clutter. An important feature of these terrain effects 
is their patchiness: for example, low-flying targets 
may move in and out of clutter several times while 
flying towards the radar site. The path of a low- 
flying air vehicle relative to such terrain features 

92    4   15   024 

can critically affect the radar performance; this is 
illustrated in Figure 1. 

Figure I 
Illustration of the effect of the path of a low- 

flying air vehicle on its detectability 

Two classes of model have been used to predict such 
effects. Detailed site-specific models1 can predict 
radar performance for a particular adar site and air 
vehicle trajectory; such models rely on high fidelity 
terrain and land cover data. However, while the 
performance for a well-specified site and trajectory 
can be found, it is not clear how many sites and how 
many trajectories for each site would have to be 
analysed to give a statistically significant answer; 
furthermore, this approach is conputationally 
expensive. In contrast, simplistic jpherical-earth 
clutter and screening models do not address the wide 
variability of clutter and screening effects with 
different target paths. 

The purpose of this paper is to outline a stochastic 
model of terrain screening and land clutter, which 
provides a middle way between the detailed site- 
specific and simple spherical-earth models. The 
stochastic model, which has been tested against 
measured clutter data and digital terrain elevation 
data (DTED), describes the large-scale spatial 
correlations of target screening and of clutter for 
three generic classes of terrain (level, low-relief and 
high-relief). 
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The concept of required height 

Terrain-following Targets and Ground Clutter 

The screening of terrain following targets can be 
described in terms of a single quantity, the height, 
hr, above the terrain that the target must reach to be 
visible. The concept of required height is illustrated 
in Figure 2; the occurrence of (line of sight) ground 
clutter corresponds to regions where this required 
height is zero. The required height can be defined at 
every point within the region of interest, giving: 

hr=hr(R.e) (1) 

where R and 0 are polar coordinates relative to the 
radar site as origin. 

The proposed stochastic model characterises the 
required height h^R.Ö) as a random field, with a 
different ensemble of such fields corresponding to 
each of the terrain classes of interest. The terrain 
classes considered are: 

())     Level sites; these are generally well modelled 
in terms of a spherical earth. At X-band, the 
clutter visibility, defined as the fraction of 
cells at a given range which are cluttered, 
gradually falls away with range, the main 
drop in clutter visibility occurring near the 
spherical earth horizon. 

(ii)   Low-relief sites (eg gently rolling tarm-land): 
in these njg.ons, the clutter persists beyond the 
spherica' earth horizon, and there is 
patchiness, or correlation, in the clutter 
visibility. An X-band clutter map for such a 
site. Spruce Home, is given in Figure 3 (upper 
map). The maximum range in this figure (and 
all other clutter maps shown here) is 24 km; the 
"spherical earth" clutter horizon for the given 
radar height (18 m) is only 16 km. 

(iii) Higl- -re'ief sites Oe mountainous areas): here, 
the lAutter persists at very long ranges, and 
there may be anisotropy and periodicity in the 
clutter visibility due to regular mountain 

ridges. The illustrative clutter map shown in 
Figure 3 (lower map) was measured at Scranton. 

Spruce Home (low-relief) 

Scranton   (high-relief) 

Figure 3 
Clutter maps for a low-relief site. Spruce Home, and 

a high-relief site, Scranton. 



A reasonable statistical description of the terrain 
shadowing is obtained in terms of an underlying 
random field, £(R,0), such that; 

MR,e)=£(R,0) 

hr(R,0) = O 

g(.R,0)>O; 

g(R,e)<0 .       (2) 

The root required height, V/i,(R,fl), follows a 
truncated Gaussian distribution characterised by a 
mean, /i(R), and a standard deviation, o(R), with 
the following functional forms: 

fi(R) = A + BR +Ch* ; 

a(R) = a. 0) 

The parameters A, B, C and crare constant for a given 
terrain type, and A* is the height of the radar above 
the mean terrain height. Figure 4 illustrates this 
truncated Gaussian distribution for Vh/{R,e); 
histograms of the root required height at different 
ranges, constructed from a single (low-relief) 
shadowing diagram, are shown, together with the 
best fit (maximum likelihood) Gaussian. The spike 
at zero required height, corresponding to cluttered 
regions, has been removed. 

The two point correlation function of the normal field 
j can be expressed: 

p(ro,ri) = exp/-     a(R,v,f)dr\. 

I ''« I (4) 

The function oiP.^.Q is terrain type dependent. The 
angle ^ describes the direction of the target's path 
relative to the radial direction (ie v=0 implies ,i 
radial path and ^=90° implies a tangential path), 
and the angle f describes the path's direction 
relative to a fixed direction (this latter dependence 
only arises in high-relief sites, in which a preferred 
direction is defined by the mountain ridges). 
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The model parameters, A. B, C, aand the function a 
have been evaluated from DTED corresponding to 
each of the classes of site. The values given here are 
tentative, since a sufficiently large data set to give 
firm values has yet to be analysed. 

(i) Level sites: as the scattering arises from 
"-rtical discretes1, simulated screening 
diagrams can be constructed by applying an 
uncorrelated clutter distribution to a scs tuning 
diagram for a spherical earth, modelled 
deterministic-ally. Formally, this gives the 
following parameterisation (where T is the 
earth radius): 

/f(p?-K-Y2aEft* 

a(R) = 0 ; 

p(n,r2) = 0 . (4) 

(ii)   Low-relief sites: Table 1 gives values for the 
parameters /I, B, C and <j (note that since g is 
the square root of a height, the units of fi and a 
are V(metres)). The site height A* for the 
particular cast considered. Spruce Home, is 37 
m. In addition, the two-point correlation 
function (defined in terms of a) can be written: 

a (R, (K O = Po expj-^| + P, + 
\Rü2/ 

+ ß^sin^+Qjsinf .      (5) 

The parameters PQ, P,, % Q^and Qf are given 
in T-ble 2. For low-relief sites, the parameter 
Qf (describing the dependence of the 
correlations upon the direction of the path 
relative to a preferred direction) vanishes, 
implying that, on average, the screening 
diagrams are Isotropie. 
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Figure 4 
Histograms of the square root of the required height for three different ranges; zero-height values removed 
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A/Vm B/m-1/2 C/m-V2 o/^m 

Low-relief -3.6 0.3X10-3 -0.05 3.2 

High-relief +14.7 0.6x10"3 -0.07 6.3 

Table 1 
Parameters describing the single-point statistics of g 

Po/km"1 Pj/km"1 Ro/km Q^/km-1 Q^/km1 

Low-relief 0.25 0.005 40. 0.02 0.0 

High-relief o.;o 0.005 20. 0.005 0.02+0.141 

Table 2 
Parameters describing the correlations of g 

; 

(iii) High-relief sites: clutter visibility and target 
screening are much more variable for high- 
relief than for low-relief and level sites. The 
parameters describing the required height field 
are given in Tables 1 and 2; Scranton has a site 
height of 203 m. The most salient feature of this 
parameter set is the parameter Qf, which is 
not only non-zero but also complex. 
Exponentiation of this compl'-x a (as in Eqn 4) 
gives a periodic correlation; this is needed to 
If jcribe the periodicity o. the ridges 
'lustrated in Figure 3. 

Given ihis complete parameter set, screening 
diagrams can be simulated for each class of site. 
Figures 5 an^ 6 give such simulated screening 
diagrams, together with a screening diagram 
generated from DTED, for the low-relief and high- 
relief terrain types. In these diagrams, the black 
areas indicate cluttered regions (required height 
zero), and the grey scales indicate required heights 
ranging from below 50 metres (white areas) to above 
200 metres (dark grey areas). The simulations have 
captured the essential features of the screening 
diagrams for the different classes. 

Performance Prediction 

The purpose of this work is not to produce simulated 
screening diagrams to be used in place of measured 
ones; rather, quantities useful for performance 
prediction can be extracted directly from it. Two 
quantities which can be derived from the model are: 

clutter visibility, that is, the fraction of cells 
at a given range that are cluttered; 

the probability that a target is visible and in 
an uncluttered cell. 

For example, the clutter visibility V(R) is: 

V(R)=ierfcfA+AR±£id 
2       \ <fl2 I ib) 

At 
exp( 

long ranges, V(R) is proportional to 
<•#«* /202). 

For more detailed predictions, the evolution of the 
probability distribution function Pig) is used. By 
describing the way in which Pig) changes along a 
straight line path defined relative to the radar site, 
the whole ensemble of equivalent paths can be 
described at once - at no time is it necessary to 
consider a number of specific paths and simulate 
particular values for the required heights along 
those paths. Thus, it is possible to use a single, 
probabilistic calculation to describe target detection 
along all radial paths, or all paths with (say) 10 km 
as the distance of closest approach. 

Let P{g;s) be the probability distribution of the root 
required height g at a position on a straight-line 
path parimeterised by s. The two-point correlation 
function of j(s) is, from Eqn 4: 

p(so,Si) = (s') ds • 

1 

(7) 

This exponential form, together with the assumed 
normal distribution forgis), means that g(s) is 
described by a normal Markov process^. 
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Simulation 
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Figure 5 
Comparison of a low-relief screening diagram produced using the DTED for Spruce Home (top left-hand corner) 

with simulations produced using the non-site-specific model 
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Figure 6 
Comparison of a high-relief screening diagram produced using the DTED for Scranton (top left-hand corner) with 

simulations produced using the non-site-specific model 



This in turn means that the probability distribution 
function forg(s), P(g£), obeys the (forward) 
Kolmogorov equation . 

as dg2 

v as   I      dg 

+ a(s)P{g;s) 

(8) 

In this equation, (As) is the rate of decorrelation at a 
position s along the path, /i(s) is the mean value of ^ 
at position s, and tris the (range-independent) 
standard deviation of g. The quantities a, /i, and a 
depend OA the range to the radar site, the radar 
height and the terrain type; the different possible 
paths are described through the dependence of the 
range R upon the distance s. For example, for radial 
paths beginning at range R0, that range is (R0 - s). For 
non-radial paths, the range depends on the distance 
of closest approach, as well as upon R0 and s. The 
operator KJ[P(g,s)) is defined by the right-hand-side 
ofEqnS. 

Because the Kolmogorov equation is a parabolic 
partial differential equation, it is easy to solve 
numerically for a range of boundary conditions3. 

As an example of the use of this equation, consider 
the problem of the range at which a terrain- 
following target flying along an incoming radial 
path, starting at a range R0, first becomes 
unshadowed. Suppose that the target flies at a 
height ht above the terrain. This means that the 
target will first become unmasked when the required 
height for a line of sight first drops below ht, that 
is, when the root required height ^(r) first drops 
below V/if. The probability that the target has 
become unshadowed at or before r.-.üge R is equal to 
the probability that g(r') drops below Vfcj between 
R' = R0andR'=R. 

To calculate this probability, the Kolmogorov 
equation is integrated from R' = R0 to R' = R. The 
initial state for P{g;s) is the distribution function for 
the root required height g at the initial position R0, 
P^fR0)) 01 P(g;s=0). This is a normal distribution 
with mean //(K0) and standard deviation a. By 
integrating Eqn 8 from this initial state, the 
distribution of g(R) at any range R (ie any position s 
along the path) can be found. If the boundary 
condition 
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of the target height V/ij; the resulting distribution 
function P(g;s) then refers to that subset of paths in 
which the root required height g has never passed 
V/i(. Therefore, the probabi'ily at any position s 
that g has never passed Vh( (and consequently the 
target has never become unscreened) is: 

P ( the target has not yet become visible ) 

dgP(g;s). 

(10) 

Figure 7 illustrates this approach. A number of 
different curves are shown, indicating the 
distribution function P(g) at different positions s 
along the path. The lowest curve illustrates the 
initial state: g is normally distributed, with a rather 
high mean value /i(s=so). As the target progresses 
along the path, the distribution function moves over 
to the left, until it reaches the boundary at VA(. The 
boundaiy condition of Eqn 9 is applied, so that the 
part of the distribution function which refers to 
paths which have passed the point g = Vh( has 
vanished. The probability that a target path has 
not passed this point is equal to the area under the 
curve. 

P(g.So> A 

P(gSTfh7;s) = 0 

■^(3 = 8,,) 

figure 7 
Illustration cf the evolution of the probability 

distribution function P(g;s) 

Figure 8 illustrates the results which can be 
obtained. The curve shows the probability, 
calculated from the Kolmogorov equation, that an 
incoming radial target approaching a low-relief site 
has yet to enter a cluttered cell; that corresponds to 
setting the target height Ä( to zero. The figure also 
shows the result obtained for the particular site. 
Spruce Home, by explicitly examining each of 360 
radial paths. The curve was very much quicker to 
obtain computationally (- 2 seconds cpu time), and it 
clearly gives similar results to the site-specific case. 

(9) 

is applied, that is equivalent to removing from the 
distribution function all paths for which the root 
required height g has dropped below the square root 
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Figure 8 
The probability thai an incoming radial target has 

yet to encounter a cluttered cell 

A vory similar calculation can be used to find the 
pro ability that a target at a given range has been 
detected. Detection probabilities per unit length of 
path can be defined for: 

regions where the target is unmasked but in 
clutter, ie ^ < 0; 

regions where the target is masked and clear of 
clutter, ie 0 < g < Vfy; 

regions where the target is masked by the 
terrain, ie Vä; < g (the detection probability 
per unit range will be zero in this case). 

In place of the simple boundary condition of Eqn 9, an 
additional term is added to the Kolmogorov equation 
(Eqn 8): 

Kg[P(g;s)]-pät,(g,s,ht)P(g;s) 

(11) 

where p^, is the probability per unit length of path 
that the target is detected (the arguments of pfa 
take into account the three regions just listed). This 
additional term ensures that the probability that 
the target is still undetected at a given position on 
the path drops at the appropriate rate. The simple 
boundary condition of Eqn 9 corresponded to the 
following limiting choice of p^,,; 

fdel {g,S,h,) 
0,      g>fh't; 

<fhl. i (12) 

It is just as straightforward to evaluate (for 
example) the range at which there is a 50% chance 
that a target has been detected as is it to find the 
range at which there is a 50% chance that it has 
been unmasked. 

Conclusions 

The non-site-specific, stochastic model of land 
clutter visibility and of terrain screening of targets 
described in this paper appears to fit the data well. 
The model accounts for the correlations in target 
screening and clutter visibility, as well as their mean 
levels. It makes it possible to answer quite detailed 
questions (eg concerning the length of track which is 
likely to be available to a land-based radar system) 
relating to general classes of sites, with a high 
degree of computational efficiency. 
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DISCUSSION 

E. Lüneburg, GE 
The approaching aircraft follows the natural terrain. Is this accounted for in your 

modelling? 

Author's Reply 
The aircraft follows the terrain in the sense that it remains at a constant height above the 

local terrain (e.g., it goes up when it encounters a hill). The model does not account for the 
possibility that the aircraft might choose to fly around a hill rather than over it; however, modelling 
such detailed aspects of the aircraft's trajectory is probably better done in a site-specific 
framework. 
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