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A GENERAL CHANNEL MODEL FOR RF PROPAGATION THROUGH STRUCTURED
IONIZATION

Roger A, Dana
Mission Research Corporation
Santa Barbara, California

Leon A, Wittwer
Defense Nuclear Agency
Washington, D.C.

INTRODUCTION

\] Design and evaluation of radio frequency (RF) systems that must operate through ionospheric
disturbances resulting from high altitude nuclear detonations requires an accurate channel model. Such
a model can be used to construct realizations of the received signal for use in digital simulations of
transionospheric communications links and radars or for use in hardware channel simulators. )

It is well known that the first order statistics of the received RF signal after propagation through
strongly scattering ionospheric disturbances are accurately described by the Rayleigh probability
distribution for the amplitude and a uniform distribution for the phase. Equivalently, the two
orthogonal components of the received electric field are independent, zero mean normal ratdom
processes. Given the second order statistics of the received signal, standard statistical techniques can be
used to generate realizations of the channel impulse response function from which the received signal
can be constructed.

The second order statistics of transionospheric RF scintillation are described by the two-position,
two-frequency, two-time mutual coherence function of the received signal. The derivation of the
mutual coherence function, which is a solution of Maxwell's equations, requires a model for the
temporal and spatial variations of the electron density fluctuations in the ionosphere, Under Taylor's
frozen-iri hypothesis, the electron density fluctuations are described as a rigid structure that drifts past
the line-of-sight. There is then a deterministic relationship between spatial and temporal fluctuations in
the electron density. This model is accurate when the ionization has formed a thin layer of striations
-dligned with the geomagnetic field lines, Before striations have formed or when there are multiple
scattering layers in the ionosphere with different relative velocities, a turbulent model may be more
appropriate. In the fully turbulent case, the spatial and temporal fluctuations of the electron density are
uncorrelated. Reality should lie somewhere between these two limiting models.

This paper describes a general model which varies smoothly between the frozen-in and turbulent
models. The starting point for the general model is a description of the electron density fluctuations in
the icnosphere that includes space-time correlation. Then the mutual coherence function for the
general model is presented. Examples are given which illustrate the effects on the received signal due
to the variation from the turbulent to frozen-in models,
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MUTUAL COHERENCE FUNCTION

The derivation of the mutual coherence function starts with Maxwell's equations from which the
parabolic wave equation is derived. The parabolic wave equation can be solved to give the received
electric field for a specific electron density distribution in the ionosphere. However, the electron
density distribution is a random process so the received electric field is also a random process. The
parabolic wave equation is therefore used to derive an equation for the two-position, two-frequency,
two-time imutual coherence function of the electric field, I'(Ar,A®,At). The solution of the differential
equation for I', which is also a solution of Maxwell's equations, then provides a description of the
second-order statistics of the received electric field, The Fourier transform of the mutual coherence
function is the Gencralized Power Spectral Density (GPSD) of the received signal.

Consider a monochromatic spherical wave with an electric field E(r,m,t) which is a function of
position r, carrier radian frequency o, and time t, The wave originates from a transmitter located at r
= (0,0,-z¢) and propagates in free space in the positive z direction until it is incident on an irregularly
ionized layer which extends from 0 <z < L and is iafinite in the x-y plane. After emerging from the
layer at z = L, the wave propagates in free space to a receiver located at r = (0,0,2;). This geometry is
illustrated in Figure 1. As the wave propagates, its phase varies as it - i(k)z, o we can write

z
E(r,ot) = U(r,wt) exp [i[m( . I(k(z')) dz')] o
-zt
where
2 4 2
(K)? = % _[1 ) nrez)z(ncz ] ' o

¢ is the speed of light in a vacuum, (ne) is the mean free electron density in the jonosphere, and rg is the
classical electron radius. Under the small angle scattering assumption, it can be shown that U obeys the
parabolic wave equation [Tatarskii 1971):

) 4nr¢czn¢(r.t)

viu - 2i(k)%} - (k)l[ o ]U =0 3)

where ne(r.t) is the free electron density which is a function of space and time.

Transmitter

p:. Scattering
*  Layer

Receiver

Figure 1, Propagation geometry.
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The statistical nature of ne(r,t) requires a statistical approach to solving the parabolic wave
equation. 'Thus a diffcrential equation for the mutual coherence function,

I'(ArAGAL = (U(r;,0pt) ) U*(rsmats) 4)

is derived from the parabolic wave equation assuming small angle scattering, wide-sense statistically
stationary processes, and a mode for the temporal fluctuations of ne. The details of this derivation may
be found in Tatarskii [1971] or Dana [1986].

The solution of the differential equation for the mutual coherence function depends on structure
function A(p) [Sreenivasiah, Ishimaru, and Hong 1976}

d’K
Ap) = j exp (K 1:0) Se(KLK:=0) 5 5)

where p is a position vecior in a plane normal to the line-of-sight with components x and y, and S¢(K)
is the three-dimensional power spectral density of the electron density fluctuations in the ionosphere.
The structure function is then the correlation of the electron density fluctuations in a plane normal to
the propagation direction. It is these fluctuations that cause diffraction and scintillation in the received
signal, A power-law form for Se is usually assumed [Wittwer 1979] which results in a Bessel function
form for the structure function. Because the structure function occurs in the exponent of the solution
for the mutual coherence function, the quadratic phase approximation is made to produce a
mathematically tractable result. This quadratic phase approximation simplifies the expression for A(p)
t0

2
Alp) = A0[1 - Ay (l—’iz + é ]] : 6)

The constanis Ag and A, are determined by functional form of Sg and by the phasc variance imparted
on the wave in the ionosphere. The quantities Lx and Ly are electron density fluctuation scale sizes in
the planc normal to the line-of-gight.

Although much information is available on the spatial fluctuations of ne (see, for example,
Wittwer 1979), there is little information on small time-scale fluctuations of n.. Thus S¢ does not, in
general, contain Doppler frequency information, and a model is required to describe the temporal
fluctuations. A general model for temporal dependence of the quadratic form of the structure function
is

2 2
t Cxy xt _Cyryt .
A(P-‘)=Ao[l'Az(ﬁ*‘%*ﬁ'zﬁﬁ'zﬁ%ﬂ- W)

The quantity T can be thought of as a “decorrelation time” of the electron density fluctuations in the
ionosphere. The degree of space-time correlation is determined by the coefficients Cxt and Cye .

This form for the structure function reduces to the frozen-in model if, for example, Cy, is set to
unity and Cy is set to zero. Then the x dependence can be written as (x-vt)}/L2 where the velocity is
equal to Ly/Ty. The turbulent model corresponds to the case where both Cx¢ and Cy are zero.

Given a quadratic form for the structure function, a closed-form solution can be obtained for the
mutual coherence function [Knepp 1983, Dana 1986]. This solution reduces to a mathematically
tracteble form when it is assumed that the scattering occurs in a thin layer. With these assumptions, the
mutual coberence function for the general model is
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exp [ 3 (%?ﬂ oxp [ (- G- GJ]

F(X»yo(ﬂol) = OA L ®A 1
. x|2 . yi2 .
[1 + mcoh] [1 +i ﬁ)coh]
X LY Y Ly
fy Cxt T (ny - C.‘/t T
X exp| - oA, | |- Y. (8)
L+i Wcoh 1+i Weoh

where 0y is the standard deviation of the phase fluctuations imparted on the wave in the ionosphere, wy
is the angular frequency of the RF carricr, and

244 ]'5 [ 24 ]12-
Ax = ; Ay = |- . (9)
* [1; + 25 A ¥ MO

The decorrelation distances x and Ly are given by the expressions

_ (a+2zply 0 (z¢ + zp)Ly (10)

T nopA, Y oA,

the decorrelation time is given by the expression

L

T

——f

Ty = . 11
0 0¢‘\jA2 an

and the coherence bandwidth wgoh is given by the expression

Ay@iL: 24 + z
_ Dy%olx £t T 4r .
Wcoh = 2002¢A2 242; (12)

GENERALIZED POWER SPECTRAL DENSITY

The generalized power spectral density S(K ¢ ,T,mp) of the signal incident on the plane of the
receiver is the Fourier transform of the mutual coherence function:

sKrtop) = [d%p [ 32 [dtr(,00 exp [-(KLp-wt-0pt)] (13)

where angle-of-arrival K| is the Fouvrier transform pair of position p in the x-y plane, delay 7 is the
Fourier transform pair of relative carrier frequency ®, and Doppler frequency wp is the Fourier
transform pair of relative time t, ‘The quantity S(K 1,7,0p)(d’K 1/4n%)dt(dwp/2x) is equal to the mean
signal power arriving with angles-of-arrival in the intervel K 1/4n? to (K L+d?K 1)/dx?, with delays
relative to a nominal propagation time in the interval 7T to T+dv, and with Doppler frequencies in the
interval wp/2x to (0p+ dap)/2r. The delay dependence of the GPSD i3 a consequence of the fact that
some of the signal energy takes a dog-leg path through the ionosphere from the transmitter to the
receiver and atrives later than the signal energy that propagates straight through the jionosphere.
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In general, the GPSD can be written as the product of a Doppler spectrum Sp(wp) and an angle-
delay spectrum Sg1(K ,t):

~ S(KL,%wp) = Sp(wp) Skyf™L,T) . 14)

After performing the integrals indicated in Equation 13, the Doppler spectrum for the general model is

op - CxitKxlx - CyiKy2y)?*]
\E‘to p[_(‘to D - Uxthoglx - CytRy y)J (15)

Sp{wp) = e
p{®wD) r‘_—l-CE;-C}, X 401 - B - CB)

In terms of the components of K, (Kx and Ky), the angle-delay part of the GPSD is

L Kz az K 2 lz
1]
SK?(KXvao‘c) = ['2—] 2 !xly a(ﬂcoh exp [. x4 X - —-y4...l ]

2 A K2+K2 12 2
X exp {92‘- [mcom- —ﬁ-ﬁ—y)——"] (16)

where the delay parameter o is defined to be

%
o = oot an

The value of a is quite large under strong scattering conditions. The components of K. are related to
the scattering angles 6x and 6y about the x and y axis respectively by the relations

2r sin(0 2% sin(@
Ky = us;:) x) Ky = ns:g 12. as)

It should be noted that the range of delay in Equation 16 is from -ee to +w. However, this delay
is relative to some nominal propagation time, and the value of the GPSD rapidly approaches zero for
decreising negative values of Wcon?. In the limit that o is infinity, the GPSD is non-zero only for
positive values of delay. Thus Equation 16 presents no real problem with causality,

It is interesting to examine the limits of the general model Doppler spectrum in order to show
that this model does indeed encompass both the frozen-in and fully turbulent models. These Limits for
the Doppler spectra are:

Limit
Cxt- 1 Sp(wp) = 2x 1o 8(1e0p - Kxx) (Frozen-in Model) (19)
Cy( -0

and

Limit
Cxt-0 Sp(wp) = V& 1pexp [

1) T
el (Turbulent Model) (20)
Cyt=0

For the frozen-in model, the delta-function relationship between Doppler frequency and Ky is what is
obtained by assuming that the random diffraction pattern of the signal is “frozcn” and drifts in the x
direction past the receiver. For the wrbulent model, the Doppler spectrum is independent of K1 so the
temporal and spatial variations in the received signal are alsc independent.
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When the two decorrelation distances are equal (4x = Ly = &), the scattering is isotropic about
the line-of-sight, and the GPSD takes a somewhat simpler form. A three-dimensional plot of the
isotropic one-dimension angle-delay part of the GPSD (Equation 16 integrated over one component of
K1) is shown in Figure 2. This plot shows the mean received power density as a fuaction of
normalized angle K4, and normalized delay weont. The vertical axis is linear with arbitrary units.

Figure 2, Angle-delay generalized power spectral density.

It can be seen that the power arriving at large angles is also the power arriving at long delays.
The power arriving at long delays thus has higher spatisl frequency components than power arriving at

short delays. When there is strong space-time correlation (i.e. when ‘\j o+ Czy! is approximately

equal to unity) these higher spatial frequency components correspond to higher Doppler frequency
components, The signal arriving at long delays then varies more rapidly in time than the signal
arriving at short delays.

Another view of the GPSD can be obtained by considering the delay-Doppler scattering function
(Equation 14 integrated over K}). For the turbulent model, the scattering function is separable into a
function of Doppler frequency times a function of delay. This is rot the case for the frozen-in model,

A comparison of the scattering functions for the frozen-in and turbulent models is shown in
Figure 3. The frozen-in scattéring function is just a reproduction of Figure 2 with normalized angle

K1, replaced with normalized Doppler frequency tgwp. This is a consequence of the delta-function.

relationship between angle and Doppler frequency for the frozen-in model. For this model the signal at
long delays has correspondingly large Doppler shifts, and a wing-like structure is seen in the scattering
function. The turbulent model scattering function does not exhibit these Doppler wings because the
Doppler spectrum is the same at all delays. Both functions have exactly the same power density at each
delay. The difference in appearance of ihe figures is due to the fact that the turbulent model signal at
long delay is more spread out in Doppler frequency and is therefore less obvious,

147

[USE

S

RasSEA



FROZEN-IN MODEL TURBULENT MODEL

Figure 3, Comparison of scattering functions for the frozen-in and
turbulent models.

A progression of scattering functions for the general model is shown in Figure 4. The space-
time correlation coefficient Cx; varies from 0.99 for the scattering function in the upper left to 0.7 for
the scattering function in the lower right. The scattering function for Cx; equal to 0.99 is essentially
identical to that for the frozen-in model, and the scattering function for Cx; equal to 0.7 is essentially
identical to that for the turbulent model. For intermediate values of Cy,, the scattering functions still
exhibit Doppler wings but the wings have broader Doppler spectra as Cx; decreases.

a Cu =099

Figure 4. Scattering functions for the general model.
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MATCHED FILTER EXAMPLE

Signal scintillation can be either flat fading (nonselective) or frequency selective, depending on
the signal bandwidth and the degree ionospheric disturbance. If all frequency comrponents of the
received signal vary essentially identicaily with time, the propagation channel is referred to as
nonselective or flat fading. When the scintillations exhibit statistical decorrelation at different
frequencies within the signal bandwidth, the channel is referred to as frequency selective. The level of
frequency selective scintillation disturbance is measured by the frequency selective bandwidth, f,. This
parameter is defined as

- L. _ Qcoh
fo =m0y = 2x @n

where o is the standard deviation of the time-of-arrival jitter,

Techniques have been developed to generate representative signal structures using statistical
channel simulators [Wittwer 1980 and Duna 1986]. The latter reference describes techniques for
generating reslizations of the channel impulse response function, and describes how these realizations
can he used to generate the output of a matched filter. A report is currently in preparation [Dana 1990]
that extends these techniques to inlcude the general model.

A comparison of the matched-filter output amplitude generated with the frozen-in, general, and
turbulent models is shown in Figure 5 for one level of frequency selective propagation disturbances,
characterized by the ratio of the frequency selective bandwidth fy 1o the transmitted chip rate Re (fo/Re
= 0.1 for these examples), Each frame provides a three dimensional picture of the matched filter
output for a single transmitted pulse as a function of time delay (horizontal scale) and time (scale
directed into the figure). The total duration of each of the frames is 10 decorrelation times.

The top frame shows an example generated using the frozen-in model (Cxt = 1 and Cyt = 0). An
effect of the frozen-in model that is evident in the top frame is that the signal arriving at long delays
varies more rapidly in time than the signal arriving at shorter delays. The middle frame is a general
mode] realization (Cx; = 0.9 and Cy; = 0), and the bottom frame is for the turbulent model (Cxt = Cyt =
0). The difference between the top and bottom frames is that the turbulent model amplitude has the
same fading rate at all delays. It can be seen that the general model realization falls somewhere
between these two limiting cases.
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Figure 5. Matched filter output amplitude time histories for frequency
selective channels.
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