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., "UNIFORM GEONETRICAL THEORY OF DIFFRACTION
by

P.14. -Pathak a
hTe Ohio State Uni'versity ElectroScience Laboralory, • 1320 Kinnear Road

Colurili-s, Ohio 43212

' Keller's geometrical theory of diffraction (GTO) represents a major breakthrough in solving a wide
,Z) variety of electromagnetic (EM) radiation and scattering problems at high frequencies. In particular, the

GTO is an extension of geometrical optics to include a class of diffracted rays via a generalization of
Fermat's principle. These diffracted rays are initiated, for example, from geometrical and electrical
discontinuities in a scatterer, or from points of grazing incidence on smooth convex parts of the
scattering surface. However, being a purely ray optical theory, the original GTO fails within thetransition regions adjacent to geometric optical shadow boundaries where the diffracted field generally •

assumes its largest value. This limitation of the GTO it overcome via the uniform version of the GTO
(i.e., UTD) which requires the diffracted field to makp the total high frequency field continuous across
the optical shadow boundaries. The UTD solutiors for che diffraction by edges and smooth convex surfaces
are reviewed in detail after introducing the basic concepts of GTO. Results based on a few additional UTO
solutions are also presented together with i few selected applications of these UTO solutions to predict
the EM radiation and scattering from complex structures.

I. INTRODUCTION 1

An efficient analysis of the radiation and scattering of waves by objects which are large in terms of
the wavelength can be performed via high frequency techniques. One of the most versatile and useful high
frequency (HF) techniques is Keller's geometrical theory of diffraction (GTO) rl,231 which was developed

in the early 1950s. The GiTO constitutes a significant extension of geometrical optics (GO) in which a
class of diffracted rays are Introduc6i to exist in addition to the usual rays of GO. These diffracted
rays are postulated via a generalization of Fermat's principle with the knowledge that at high frequencies
diffraction, like reflection, Is a highly local phenomenon. lust as reflected rays originate from points
of specular reflection on an illuminated surface, the diffracted rays likewise originate from cer+4in
localized parts on the surface: e.g., from geometrical and electrical discontinuities, and from points of
grazing incidence on a smooth convex surface as shown in Figure 1.

The shadow boundaries divide the space surroundinq an illuminated hony into a lit region where the GO
incident, reflected and refracted rays are present, and into a shadow region where these G0 rays are
absent. Thus, the GO approach Is seriously in error within the shadow region where It predicts a zero
field; this limitation of GO is overcome by the GTO since the diffracted rays penetrate into the GO shadow
zone to entirely account for the field therein. Furthermore, the diffracted rays can also enter into the
lit region and thereby provide an improvement to GO in the lit region. The total GiTn field is a
superposition of the field of all the GO incident, reflected and refracted rays together with the field of
all the diffracted rays which pass through the observation point. The initial values of the diffracted
ray fields are given In terms of the diffraction coefficients just as the initial amplitudes of the GO
reflected and refracted rays are given in terms of the reflection and transmission coefficients.

r
Oue to the local nat-ire of diffraction at high frequencies, the diffraction coefficients can be found

from the appropriate solutions to simpler canonical problems which iiidel the geometrical and electrical
properties In the neighborhood of the point of diffraction as I( the original problem. Consequently, the
(iTO provides an efficient high frequency solution to problems that cannot 4e solved rigorously. Thus, a
GT6 analysis of the radiation/scattering from complex shapes can be developed by simulating these
structures with simpler shapes that locally provide a sufficiently accurate description of the dominant
reflection and diffraction effects. The GTD can also he useful in providing information on ways to
control the radiation/scattering from different parts of the structure. It is interesting that even
though GT6 is a high frequency method, it is often foind to work for objects nearly as small as a
wavelength in size. Although GT6 is not a rigorous method, it generally yields the leading terms in the
asymptotic high frequency solutions of diffraction problems.

Since the GTO is a purely ray optical thsory. it fails within the transition regions adjacent to the

GO shadow boundaries where the HF field generally undergoes a rapid transition across the shadow boundary

from one ray optical form in the lit region to another ray optical form in the shadow region.
Consequently, the HF field departs from a strictly ray optical character within the GO shadow boundary
transition regions. This failure of the original GT1 can be overcome ly uniform versions of the GTO such
as the UT0 [4,51 and the UAT [61. In the present development, the foca'- will he on the UT1. Basically,
the I11 remains vilid within the GO shadow boundary transition regions where the ordinary GT6 fails, and
secondly, it reduces to the GTO outside these transition regions where the latter is indeed valid.

The GT6 an, its uniform versions (dTD;UAT) fail within the regions of GO and diffracted ray caustics.
Ray caustics or focii occur whenever a family of rays (i.e., ray cong uencesl merge or intersect to form a
focal surface, or a focal line or a focal point. The field near diffracted ray caustics can be described
with the help of the equivalent current method (ECH) [7,8,91 in which the GT0 indirectly provides the
strengths of these equivalent currents that radiate fields at and near the caustics. Away from the
caustics, the ECM usually reduces to the GT0. The ECH can in general ne used provided the GO shadow
boundaries and caustics do not overlap. In the latter situation, ECM could in some cases still be used
but only after significant modification; alternatively, the physical theory of diffraction (PTO) can be
employed. The PT1 was introduced by ifmtsev [101 in the Soviet Union at about the samie time as Keller's
GTD was introduced in the U.S. The PTO requires an inteqration of the asymptotic HF curr.nts on the
radiating/scattering body. If the PTO integrals can be evaluated asymptotically outside the confluence of
GO shadow boundary and caustic regions, then it pnerally reduces to the GTO. However, in some special
instances, the GTO can be made to work without resorting to ECM or PT1 despite a presence of a confluence
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•"• • I•of caustic and GO shadow boindary transition regions. Away from the special regions where it may be
"necessary to use ECH or PTD, it is natural to 'employ the more efficient GTO/UTO which unlike the ECM and

PTD requires no integration [11i.

These notes will deal mostly with the diffraction by perfectly-conducting surfaces in free space.

The GTD formulation is presented after briefly introducing the concept of wavefronts, rays
and GO in Section I1. Next, the UTD is discussed and UTO expressions are given for the two main
diffraction mechanisms; namely, for edge diffraction and diffraction at a smooth convex surface. Other

UTO solutions are not included due to space limitations. Finally, a few examples illsutrating the utility
of UTD to analyze radiation and scattering problems are given in Section III. An eJit time dependence Is j
assumed and suppressed In the following development.

I1. THE 67D AND ITS UNIFCIM VERSION -- THE UTD
The basic ideas of wavefronts, rays and GO are briefly reviewed at first. Diffracted rays which

exist in addition to the GO rays are discussed subsequently.

A. Vavefronts and Rays

A wavefront is an equiphase surface. The connection between wavefronts and rays can be made in
several ways. One such procedure which is based on the method of stationary phase is &-¢ribed below.
Let 'Ef') and T(P') refer to the electric and magnetic field intensities at any point P on an equiphase
(or wavefront) surface S. The electric fieldiE(r) at a point P ahead of the wavefront is provided by the
equivalence theorem as:

JkZo - e"JkR•(• , l s'(-T-)[R x R x 5s(P') + en s•)]-- !
E(r) Jfds' C(-41- JF' +YRixMS'1

in which the equivalent electric and magnetic surface current sources 's and Ms, respectively on S are

ws ; ) - 'x ý iw ) ; M (F .) - i (w ) x • ' .(2a ,2b )

The quantity Zo denotes the impedance of free space. and Yo1(Zo)' Also, k represents the wave number of

free space. The vector R and the unit normal vector n' to the surface S at P' are shown in Figure 2.

Consider a rectangular coordinate system chosen for convenience so that the x and y axes are tangent

to the wavefront at 0, and jP - ;!FI as in Figure 2. It is noted thet n'-z at 0. It is generally true

that there is at least one point 0 on S so that OP - ;'J01: however, for the present development it is
assumed that there is only one such point 0. If there are more points on S with the above property such

that the n' directions from those points intersect at P. then P is said to be a focal or caustic point.

From the principle of stationary phase as described for example by Silver [121, the e-JkR within the
integrand of (1) oscillates rapidly for large k to produce a cancellation (destructive interference)
between each of the spherical wave contributions to P which arise from the different elemental sources on

ds' over S that do not lie in the immediate neighborhood of 0; whereas, e changes slowly for the
spherical wave contributions to P arising from the elemental sources on ds' that are in the immediate
neighborhood of 0 and thereby provide a constructive interference to P. Thus, at high frequencies (or
large k), the dominant field contribution to P comes from 0 on S; this point 0 is zalled the "stationary
point." Without details (which can be found in [121), the stationary phase evaluation of (1) yields the
following contribution from the stationary point:

EM(P) - E(O) (( e) !l's

The expression in (3) describes the continuation of the field at 0 to the field at P along the highly
localized or "ray" path DF; the field t(P) in (3) is thus referred to as a ray _ptical field. Figure 3
shows a ray tube interpretation of the energy transport along the central ray _0P as indicated by (3). The
Sland P2 in (3) refer to the principal wavefront radii of curvatures at 0. From Figure 3 one notes that
the energy flux crossing the area dAo of the wavefront at (lts given by Ir(O)J2 dA0 , and likewise, the
energy flux crossing the area dAn of the same ray tube is lr(P)12dAp. Since dA6-(pld*I)(p 2d02 ) and
dAp-[(pI+s)d•1I [(P?+s)dt21, it is then clear that conservation of energy in a ray tube, which in turn
requires that r(O)i"dAW0 -4(P)l

2
dAp, leads to

2 2 P1 1P2
lr(p)I'_ lE(0)l1 (pl+s)(p 2 4s) (4)

which is automatically implied in (3). The field E(P) at P has the same polarization as the field E(O) at
0 because the ray path Is straight in a homogeneous medium. The field intensity in (3) becomes singular
when s'-IpiI or s'-IP21; these points on the ray path are marked (3-4) and (1-2) in Figure 3, and they are
referred to as ray caustics. The actual field is not singulat at the caustics; clearly the simple
expression in (3) is therefore not valid at and near the caustic. even though it is asymptotically
accurate away from the caustics. The distances PI and P2 are also referred to as caustic distances. The
distance s is measured positive in the direction of ray propagation. The caustic distances P- and P2 are
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positive if the caustics occur before the reference point 0 as one propagate,, ilong the ray; otherwise,
they are negative. If pi and p are positive, the wavefront is convex; iT "he- are negative, the
wavefront is concave. I one of the radii (pI or P2) is positive while t'Ae ater is negative then the
wavefront Is saddleshaped. If PI and 02 are'negative, and if:s>- plI , or Yi-JP21, then a caustic is
crossed at (3-4) or (1-2) in Figure 3, respectively so that ((pi)/(pi+s)l rcr ((P2)/(P +s)) changes sign
within the square root of (3). The positive oranch of the square root is chosen in (i) so that

+ es + sS)(5

and -P*" or P2. Thus, a phase jump of w/2 occurs at each causting ;rossing.

The field in (3) is sometimes also referred to as an "arbitr 'v' -4y optical field since p and P2Scan be Warbitrary°" The geometry In Figure 3 is referred to as -', ,stigmatic ray tube or a quadratic ray

pencil because of the quadratic wavefront surface approximation if 0 chat is used ir the stationary phase
approach leading to (3). It Is noted that if PI and p2 become in, nite, then the field in (3) is that ofa plane wave, If pI or P2 become infinite then (3) is a cylindrt:,il wave field. Also, if 0-1P2 (-finite
value), then (3) is a spherical wave field. Thus, plane, cylinei •I, spherical and even conical wave

fields are special cases of an arbitrary ray optical field; cli' it follows that each of these fields
is also ray optical.

Since the wavefront surface S in Figure 3 can be associat, with either an incident, reflected or
diffracted wave, the field expression in '(3) there'ore applie, qually to incident, reflected or
diffracted rays. The field is polarized transverse to the ra) id the wavefront at P is "locally" plane
If ks Is sufficiently large (as is assumed to be true In the ',tionary phase evaluation leading to (3));
also, the local plane wave relation between Z and TT holds, n -y:

(p) - 0 ; x (p) (6)

or

in which s - OP/OPl is the ray direction.

B. The GO Field

The GO field is a ray optical field. The incident AO field is associated with rays directly radiated
from the source to the field point. W en such an Inci nt ray congruence strikes an object, it Is
transformed into a reflected ray congruence. Since th, p esent notes deal mostly with scattering by
impenetrable objects, there are no transmitted or refr.cei rays produced in this case. The incident and
reflected GO rays satisfy Fermat's principle which makes the incident and reflected ray paths an extremal.
Consider a plane wave incident on a perfectly-conducting wedge or a smooth convex surface as shown in
Figeres 4(a) or 4(b). The incident rays are partly blocked by these surfaces creating the so-called
shadow zone where the incident ray optical field vanishes. The incident shadow boundary ISB in Figure
4(a) and the surface shadow boundary SSR in Figure 4(h) divide the region of space surrounding the wedge
and the convex surface into a lit zone and a shad,a' zoae.

It is important to note that unlike the cniry ntional incident field which is defined to exist In the
absence of any scattering objects, the GO inclee,.'. ray field exists in the presence of any objects that It
might illuminate. It is for this reason thut the GO incident field becomes discontinuous across the
shadow boundaries ISO and SS8 in Figures 4(4) ar,,x 4(b). On the other hand, the conventional incident
field would not be discontinuous anywhere outsid, the sosirce region which produced that field.
Henceforth, the GO incident electric and magnirvc fields will be denoted by V and li, respectivel

The field of the GO reflected rays that are produced by the Illuminated wedge In Figure 4(a) is also
discont nuous. In particular, the reflection shdiow boundary (RSB) delineates the regions of existence
and shadow for the reflected rays in Figure 4(a); whereas, the incident and reflection shadow boundaries
IS and RSR merge into the SSR for the convex surface in Figure 4(b).

Consider a general problem of reflection where an arbitrary GO incident ray optical field illuminates
a smooth, perfectly-conducting curved surface. The astigmatic incident ray tube associated with the

incident ray in the direction is shown in Figure 5. This incident ray strikes the surface at OR to

produce a reflected ray in the direction s The astigmatic reflected ray tube associated with the

reflected ray from OR is also shown in Figure 5. The field jr(p) at P which is reflected from OR can be
written via (3) as:

V() •~o ; r' -ejks' (8)
(P)" rr(O R) 

pP

"r1 ' ' sr) (4k(

It is noted that E (P) in 18) is given in terms of E (OR) at the point of reflection OR. Thus, thereference point 0 in (3) corresponds to the point OR in (8). The caustic distances plr and P2 associated

with the reflected wavefront are shown in Figure 5 along with the reflected ray distance sr from OR to P.
The value of !r(0) is related to the incident field li(oR) via the boundary condition
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x ( OR" r(OR) -0 (9)

Here, is the unit'normal vector to the surface at OR' It follows from (9) that

((10
r •(OR) - W" (OR) (10)

where is the dyadic reflection coefficient of the surface at . Incorporating (9) into (8) yields

OR I .r r+
E (P)- (OR) ' / • ._.• ejs (11)

The reflected mg.,otic field Hr(p) is found easily from (11) via

r(p) _ yor x (r(p) (12)

It is convenient to express Ei(QR) and r(p) in terms of the unit vectors (el,e 1 ) and (el,e 1 ) which are

fixed in the incident and reflected rays, respectively, as shown in Figure 6. The e;,e; and are

mutually orthogonal; likewise, and srare also a mutually orthogonal set. Furthermore, and el

in the plane of incidence defined by s and n at OR* As a result of Fermat's principle, also lies in

the plane of incidence and e =8r in Figure 6. Thus, if

e1 + E1(QR) 13
E EI ( 0 R ) E EI(QR ) ; ''eI N 1( 3

and

Er(p) Er(P)eI + r(p)(Sr " E•();i(14)

where e1 -si'r x e(.r , then i In (10) subject to the boundary condition (9) becomes

r 'e1 e,^Rh +e eRs 5  R, "•1 . (15)
h

In matrix notation, the above I can be written as

RhO 0h 
(1

o RS s 
0  

-1

Therefore, in matix notation, (11) becomes

E r(p) 1 0 E,(OR) 12 jsr

1E(P) 10 -1 EL(OR5 (PI +Sr)(,r+sr)

The caustic distances or the principal radii of curvature of the incident and reflected wavefronts which
i r r

are denoted b:' (pl,p2) and (pi,p5), as well as their principal wavefront directions
are given in 1131.

It is clear that tne GO representation of (11) fails at caustiLs which are the intersection of the

paraxial rays (associated with the ray tube or pencil) at the lines 1-2 and 3-4 as shown in Figure 3.

Upon crossing a caustic in the direction of propagation, (Pi r+Si~r) changes sign under t•ie rad'cal in

and a phase jump of +i/2 results as explained earlier. Furthermore, the reflected field Er of (11) fails
in the transition region adjacent to SSB of Figure 4(h). It is important to note that near the SSB (i.e.,

Sas ai1/2), p1 a.1 d p2 approach the following limiting values:
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case12c . (18a)R

2 fore + /2

r(18b)

where pg(QR) is the surface radius of curvature in the plane of incidence at 
1
)R' and pb is the radius of

curvature of the incident wavefront In the (t,b) plane (i.e., in the plane tangent to the surface) at Q
^r 'r

for e
1
+m/2. Furthermore, the principal directions X and X2 of the reflected wavefront approach the

following values for grazing incidence:

X".b (atOR) (19)

for e1  W/2
"(_r (. jrx ) + ý (at OR) (20)

where t is the direction of grazing incidence at OR and b-t x n at OR. The total GO electric field EGO at
PL in the lit region is the sum of the incident and reflected ray optical fields; hence,

"(PL r r )

"' (PL) + "(QR). Re s . (21)
(p•+5r)(1+Pr)

In summary, it is noted that the GO incident and reflected fields are discontinuous across their
associated shadow boundaries such as ISB, RSB, and SSB in Figures 4(a) and 4(b), The failure of GO to
account for a proper non-zero field within the shadow region behind an impenetrable obstacle can he
overcome through the GTD and its uniform versions. Nevertheless, GO generally yields the dominant
contribution to the total high frequeocy fields, and it constitutes the leading term in the GTO solution.

The reflected GO field L) for the two-dimensional (2-f) case can be deduced directly from the 3-0

case by allowing p• to approach Infinity. -hus, one may let p prand p+ * in (11) to arrive at the
2-D reflected GO field Er(P) as

Er(PL) ' [E(OR) Rejksr (22)

in which the incident ray optical field Et(QR) noo a cylindrical wave at OR, and the caustic distance
pr in (22) for the ?-D case is given by

I I 2cos'lat

r - -
23

Pr s' pg( 0R , (23)

where ei has the same meaning as before, and st is the radius of curvature of the incident cylindrical
wavefront at OR. If the cylindrical wave is produced hy a 2-1) line source, then st in (22) can be chosen
to he the distance from that line source to the point of reflection OR on the 2-0 boundary, The quantity
Pg(QR) in (23) denotes the radius of curvature of the 2-0 boundary at the point of reflection (.

C. The Diffracted Ray Fields

The diffracted rays are introduced in the GTD via a generalization of Fermat's principle as stated
previously. Away from the point of diffraction, the diffracted rays henave according to the laws of GO.
The initial value of the diffracted ray field is given in terms of a diffraction coefficient. The
phenomencin of edge diffraction will be discussed first, and it will be followed by a discussion on the
phenomenon of diffraction at a smooth convex surface. The latter phenomenon is more complicated than the
first.

(1) Edge Diffraction

When an incident ray strikes an edge in an otherwise smooth surface, it produces diffracted rays
which lie on a cone about the tangent to the edge at the poirt of diffraction such that the angle 0.
between the incident ray and the edge tangent equals 'he half angle of the diffracted ray cone as sIown in
Figure 1(a). This cone of diffracted rays is sometimes referred to as the 'Keller cone," and it results
from the generalization of Fermat's principle to describe rays diffracted by an edge.
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Let an arbitrary ray optical field be incident on a perfectly-conducting curved wedge as shown in
GFigure 7. The resultant total h electrc field E(P) at any point P exterior to the wedge is given by

j~~p)~ . G•p d~p
(P) (24)

1 -GO
where the GO field component E (P) is given as

G( P) U pu + r (25)

The domains of existence of the incident and reflected ray optical fields E (P) and Er(P) are indicated
by the step functions U1 and Or, respectively, which a-e defined as follows:

I 1, if 0< <i<+*'
U1  { (26)

0, if x+,' < f < nx

and

SI1. if 0 < f < •€

Ur - { (27)
0, if l-ý' < * < ne.

The azimuthal angles * and *' are made by the projections of the directions of inciderce and observation
on a plane perpendicular to the edge at the point of diffraction OE, These angles are measured from a
plane tangent to the "0" face of the wedge at OE as shown in Figure R. The plane tangent to the otherface of the wedge at OE is denoted by "nW;" it is also shown in Figure 8.

The Interior wedge angle is therefore given by (2-n)W. The expressions for the GO incident and

reflected fields have been discussed previously. The diffracted field E exists exterior to the wedge

S(i.e.. for 0 < f < nw). From (2), one may write the general field expressin for theray diffracted in the

direction sd from Q, as:

d
Td(p) ._ d(po) k__0_o__p _ e'Jk(8

0 d -d d s2,d )

I o 2 d

The diffracted ray tube corresponding to (28) is shown in Figure 7. The superscript d on o0 2' and s
denotes that these quantities are associated with the diffracted ray field component. In ord4P to relate

Ed(p) to the incident field at the point of edge diffraction 0
E, one moves the reference P0 in Figure 7

to the point of diffraction 0 E on the edge by letting p d 0 so that

Ed(P) - lim 1-oEd(Po)I 0e
Iy F d d e (e9

Since Ed(p) is independent of the reference point Po0 the above limit exists and It is defined as

1;k
1tin /02 (Po) ý E(oE) , (30)

where e e 0(**" ; k) is Keller's "dyadic edge diffraction coafficient" which indicates how the energy

Is distributed in the diffracted field as a function of the angles 0, f', and 0o; 5k also depends on n and
the wavanumber k. From (29) and (30), it is clear that

' ~ ~ ~ ~ E k -_(p .s.• - J k s d

(P) k) e (31)

"where lim 92 a Pe (edge diffracted ray caustic distance), and likewise lim s E s, as shown in Figure
- 0d I d Pd1 0 a d

7. Ed(P) it polarized transverse to the diffracted ray direction sd since the field Ed(P) is ray optical;

thus, the associated magoetic field can be expressed as

fd(p) .o;d xd (32)

0~ M (32
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SIf the incident field E(o) exhibits a rapid spatial variation at then an additional term referred toas a slope diffracted fiel must be included in (31) to describe the diffracti'on effects accurately;
however, that slope diffracted field will not be described here. An expression for finding the diffracted
ray caustic distance Pe is given later in (43b).

It is convenient to express the dyadic edge diffraction coefficient ;k in terms of unit vectors fixedAe

in the incident and diffracted rays as follows. Let s and e define an edge fixed plane of incidence

^ ^d
where e is the edge tangent at 

0E. Likewise, let s and e define the edge fixed plane of diffraction.

The law of edge diffraction which defines the Keller cone is e = se. Let ando he parallel to
the edge fixed planes of incidence and diffraction, respectively as in Figure 8, and let

I^

8 o~ $ ; ~~s ~ .(33a;33h)

Here, 0 and 4' point in the direction of increasing angles * and 0', respectively. The incident field

-IE(QE) can then be expressed in terms of the triad of unit vectors (si,,¢') fixed in the incident ray;

likewise, the edge diffracted field jd(p) can be expressed in terms of (sdBo,) fixed in the diffractedrdy. Thus,

(QE) o Eo + f E, (34a)

and 0€

o d (34b)

Then
";k k k'

e "0o 
0
o
0
es Deh (34c)

k k

The sand e can be found from the asymptotic solutions of appropriate canonical wedge diffraction

problems; they are givin by:

De 1 1"" n/Tiksinto Cos - col n cos - cos n

It is noted that the Keller edge diffraction coefficient in (35) beomes singular at the incident shadow
boundary (ISR) and the refiztion shadow boundary (RSB) which occur when ,=,+0' and *n-•', respectively.
Thus, the result in (31) together with (34c) and (35) is not valid at and near the GO incident and
reflection shadow boundaries. This deficiency of the GTO can be overcome via the use of uniform
geometr~cal theory of diffraction (UTO). According to the UTD r4,51, the total HF field exterior to theS-d
wedge is still given by (24) ab in Kell-',. original GTD; however, the E in (24) and (31) is now modified

so that De of (31) is replaced by the I)Tn edqe diffraction coefficient De so that:

E (P/Q) eO,ý-0;k Pe e-jksd (36a)

The De in (36a) can also be expressed as

•e' -0o10oes - •Oeh •(36b)

In matrix notation, (36a, becomes

I es-
aF e -k'(37)

in which the Des and seh are (131:
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-¾?--D (mlo';8) -e - cot c +~~)FrkL a +(0-#')l + cot FficL a_(0-o4)

J 0 2n:w~ksinoo

TFcot 2n F~kLarn + + cot 2n FrkLroa(,+,)1 (38)

where the asymptotic large parameter kL (with the superscripts I, rn, ro on L omitted for convenience) is
required to be sufficiently large (generally greater than 3) and

t 2nwN -(0) S(0) - 2 cos
2 

( 2 ) (39a)

The N± are the integers which most nearly satisfy the equation:

2%nN± a * ±•v (39b)

with

0 t +1* (390)

Note that n-2 for a half plane or a semi-infinite curved screen. Also, n-3/2 for an exterior right angled
wedge, etc.

For exterior edge diffraction N -0 or 1, and N -- 1, 0, or 1. The values of N at the shadow and
reflection boundaries as well as their associated transition regions are given in Table I for exterior wedge
angles (1 < n < 2):,

TABLE I

The cotangent is singular when value of N
_n st at the boundary

____ _ * • 0*-w, an ISB N+
cot C 2n ) surface #*0 is shadowed N 0

cot - 0 *'+7r, an ISN

cot C 2n surface 0-nw is shadowed N 0

.W+(W+41). * - (2n-1)w-o', an RSB k
cot ( 2n reflection from surface *-ni N 1

W___4+0 * -) an RSB Ncot t 2n reflection from surface 0-0

For a point source (or spherical wave) type illumination, the distance pardmeter Li is:,

I i s dL s ifsin2
0 , (40)

in which si and sd are the distances from the point of edge diffracticn at OE to the source and observation
points, respectively. Only for a straight wedge with planar faces that is Illuminated by a point source,

L Lro . Lrn . L
1 

Is s d 2i4)=s-1_'sU n o (41)

as in (40). For an arbitrary ray otical illumination which is characterized by two distinct principal

wavefront radii of curvature, p 2" and p, the above L must be modified as shown below in the general

expressions for Lr I and Lrn pertaining to a curved wedge; thus,

s d i d i in2-a

L i d (Pe ) 'Id 0 (42a)
Pe(P1 S )(0 2+s ) at ISR



2-9

d d rr s o 2i

L d rd (42b)Per(Pr s d)(Pr+sd) _1at ISR

Here, Lr° and Lrn are the values of Lr associated with the "0" and "n" faces of the wedge, respectively.

Furthermore, er is given by:
Pe

1 1 . 2(•.n;e)(s *n)

"r ."" 2 (43a)
Pe Pe a sin 0o

"lSO Pe in (36) Is given by:

, 1 ! . e,(si-sd)

9
- e 7 si n . (43h)Pep a sin •0

The unit vector n is defined in Flg.re 8(b); whereas, me is a unit vector normal to the edge which is directed

away from the center of edge curvature at 0 The rEdius of edge curvature 1i denoted by "a" in (43). p• Is
the radius of curvature of the incident wavgfront at OF which lies in the edge fixed plane of incidence. In

the far zone when sd I >d r and dd then the L and Lr !n (42a) and (42b) simplify to
0192 sin2ao > ,, e

L - P in which the appropriate superscripts on L, Pi and P2 are omitted for convenience. It is

noted that Li and Lr in (42a) and (42h) are calculated on the appropriate shadow boundaries. The transition
function, F whIch appears in (38) contains a Fresnel integral; It is defined by

Fix) 2j/- ex f- de(e (44)

A plot of the above F(x) is illustrated in Figure 13. In (44), v' -61 if x>O and / -J 1/61 if x<O. If
x<O, then Fix) x0" F* (Ixi) where * denotes the complex conjugate. Exterior to the ( 1) transition regions

x becomes large and F(x)+l so that the uniform Dn R in (3L) then reduces to Keller's form as it should; namely,

) •e -k

e De, outside the transition region. (45)

Near the (ISO and RSR) boundaries, the small argument approximation for F(x) may be employed (since x o on
ISB and RSB); namely, one can incorporate

Fi) - /Ue VT• + x) (46)i X+O

into (38) to arrive at the following result for the diffracted field d at ISO or RSB:

E t + (higher order) I 4SIS8;RS8 2 terms _!(47)'

-if ( on shadow side o' ISIISB }

The above result in (47) ensures the continuity of the .otal HF fiela in (24) at ISO and RSR. The field
contribution arising from the edge excited "surface dif'racted rays" is not included in (24); it may be

important for observation points close to the surface shadow boundaries (SSR) associated with the tangent to
the "0" and "n" faces of a curved wedge at OE if the "0" &d "n" faces are convex boundaries. The result in
(36a) and (36b) along with (38) is valid 3ýiay from any diffilcted ray caustics Pnd away from the ed

1
e cau,'.icS~at OE.

For grazing angles of incidence on a wedge with planar faces, I)t,. - o, and Deh must he replaced by (1/2)
D~h. The reason for the 1/2 factor in the latter case is explainLd a, follows. The incitent and reflected CO
flelds tend to combine into a single "total incident field" as one app'oaches grazing angles of incidence;
consequently, only half of this "total field" illuminating the edge at Irazing constitutes the incident GO
field while the other half constitutes the reflected GO field. The cast of grazing angles of incidence at an
edge in a curved surface cannot be handled as easily as the case of a wedqe with planar faces. Presently, one

2- • /3

can only treat angles of inc'ience that a;re greater than F',AEj . I whel 1o fOE) is the radius of
curvature of the surfac, ir the directiua of the incident ayat t We point of e tferaction oE.

I i l N l Im lill I m Jmt i pin of l. qem reatio 
0
E l l
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Under the above restrictions, the result in (38) for Qe simplifies in the case of a plane or curved
screen 0n-2 case) to e

i I"D sec -ee "ML ( • FLIa('' • -r' ++,-,

Des(*'• o) " 2/' sin secC sins 2 a ) ; sec( iF[kLra(,+,'si (48)
eh 0

where a(s)-2 cos
2

(0/2) and Lir are in (42a;hI with the urlerstanding that Lc is evdluated at the RSR
correspordin9 to the face which is illurinated; hence tho superscripts "o" and "n" in Lr are dropped for this
n-2 case.

V -dp The edge diffracted field E (P) for the 2-D situation can he obtained from (36a) by allowing Pe to
approach infinity and by requiring 0o - 1/2; thus, for the 2-n case,

d

-d(p) . Ei(o • 0,Q,,',/2; k) -49)

The ne 2- case is available from (36a) and (36b) with ao=-/2 (or sinso 1). Also, LI for
the 2-0 case is given by (41) with so - r/2; in particular,

L si sd
stL. +s . (50)

Likewise, L obtained from (42b) with s a/2 r (as in (22)), ind P r - therefore, in the

Spr sd
I t isfo it 1, -

SPr + sd (51)

Note that pr in (51) is the same as the one in (23); however, pr is in general different for the "0" and "n"
faces of the wedge, with LrO and Lrn denoting the values of Lr for these two different faces. While the
expression for Lr in (42b) is fixed to its value on the RSR for convenience, the one In (51) can be evaluated
as a function of the observation point with almost the same ease as if one had approximated the value of Lr by
its value tt the RSR. The values of 0i and Lr for the 3-0 case involve various caustic distances as is
evident from (42a) and (42b). These distances are generally slowly varying within the IS8 and RSR transition
regions and it is terefore convenient to approximate Li and Lr throughout the transition regions by their
values at the ISR and RSB as done in (42a) and (42b). Outside the respective transition regions, the F
functions containing Li and Lr approach unity anyway unaffected b,, the above approximation.

It is noted that the comment below (47) in regard to grazing incidence is also valid for the 2-0 case.
-k

It is further noted that the essential difference between Be and Be is that the former is range dependent
whereas the latter is not. As a result, (36a) is not ray optical within the ISR and RSR transition regions;

Sexterior to these regions, 0 D e 
0
e as indicated before. Figure 9 illustrates the diffraction of a plane wave

by a perfectly-conducting half-plane. It is noted that the geometrical optics field is discontinuous;
however, the UTO diffracted field cancels the GO discontinuity to yield a total UTO field which is
continuous.

(ii) Diffraction at a Smooth Convex Surface

The •aometry for this problem of the diffraction by a smooth convex surface Is shown in Figure 10. The
totai high frequency field (P) for the situation in Figure 10 can be written as

Ei() + E) P + + Ed(P) , if P • P1 in the lit zone.
•(P) i L L (52)

(Ps) 11 - "I , if P - Ps in the shadow zone.

-i -r
The incident and reflected fields E and E are associated with the incident and reflected GO rays shown in
Figure 11. The step function U in (b2) is defined below with respect to the surface shadow boundary (SSR)
as:

i, in the lit region which lies above the SS8

0, in the shadow region which lies below the SS8, (53)

The surface diffracted field Ed (Ps) follows the surface diffracted ray path into the shadow region, as In

Figure 11; whereas, the field d (PL) which is diffracted into the lit region follows the reflected ray path

(of Et) in this solution. Therefore, it is convenient in this problem to combine the GO reflected field
rpU and the diffracted field -d(PL) gnto a single 'generalized reflected f g d', gr p U in the lit

region so that (52) becomes



imE(P) E1
(PL)U + Eg~PL)U If P - PL in the lit zone.
d(Ps) £!- U3 , if Ps in the shadow zone.

The fields Tgr(PL) and .'d(Ps) are given synbolically by

6 0'A) elb + nrn] P e (55)S... j.+sr),(.psr)

where the points 0 and 0 and the distances sr and sd are indicated in Figure 10. The surface diffracted
ray caustic distance P5 iN shown in Figure 11. The quantities within brackets involving and.Cr In (55) andans~ 9A A 5

(56) may be viewed as gereralized dyadic coefficients for surface reflection and diffraction. respectively.
It is noted that (55) and (56) are expressed inWariantly in terms of the unit vectors fixed in the reflected

I r
and surface diffracted ray coordinates. The unit vectors e, e;, and a In (55) have been defined earlier in

connection with the reflected field. It can be shown that cross terms actually exist in the above generalized
dyadic reflection coefficieat; hut, in general their effect is seen to he weak within the SSR transition

region. Also these tOrms vanish in the deep lit region and on the SSR. hence they have been gnored in (55).

At 01, let t1 be the unit vector in the direction of incidence, nh be the unit outward normal vector to

the surface, and b; t ;xn; likewise at 02, let a similar set of unit vectors (t 2 - n21 hg2) e lefined with

2 in the direction of the diffracted ray as in Figure 12. In the case of surface rays with zero torsion,

bh" b2 " It is clear from Figure 11 that Ps in (56) is the wave-front radius of curvature of the surface

diffracted ray evaluated in the h2 direction at 0 First, the UTO expressions fort anib in (55) and
(56) will be given below; it will he shown that these expreszions are valid within th•'transItf~h region

adjacent to the SSR. Subsequently. it will be shown how these expressions automatically simplify outside the
SSB transition region to reduce to those obtained by Keller in his GT• representatl,)n Thej~t,h ,ddsh in

(55) and (56) are (14,151: 
h

31 i L . If(l + r.t for the lit region

and

- 1[.F( t ( , for the shadow region

(5a)

TABLE It

Zeros UOW iW.ry funct on f Zeros of th i vatif ve
_ _,_of the Airy Function

SI q- 2,33611 41 - 1.01879

S~q2 - 4.08795 I "= 3.?4820

Ai'(-ql) .711 Ai(-yl - 0.53566

iAs(-t) e -0.8oti 1 Ai (-42) - - 0

The function F appearing above has been defined earlier in (44). The Fock type surface reflection functionsoft P*
is t related to the (hard) Pekeris function (q)by

h
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P*( i e-i (59a)

q*(6) , (Note that 6,0 at SSB) (59b)

where p* and q* are finite and well behaved even when 8-0; these universal functions are plotted in Figures
13, 14 and 15. Also,

ej¾ 1 ,soft case (60a)e W- d OVid) ojai •
-- W2(T)

I , hard case (61b)

In which the Fock type Airy functions V(TJ and W2(r) are

2jV(T) * WI(T) - W2 (T) ; WI(M) f dt ettt13 (61a;61b)
.•e-J~/

20) 7'. J2v/3dt e'tt 3
/3 (61c)

The rest of the quantities occurring In (57) and (58) are:

L ? MWt') 1 g 1/3
-2m(QR)COSe * I dt' mg-Fr" M &N.) - I (62:6Q:64)

t f 
0 
'dt- ; L X 2kL co.

7 Ot ; Xd kL 16)2
"01 T('•'W 627 • (6S;66;67)

O!

The quantity Pg (QR) in m(OR) denotes the surface radius of curvature at IR in the plane of incidence;

whereas, Pg (0j) is the surface radius of curvature at O• in the t; direction. The dt' in (63) and (65) is an

incremental arc length along the surface ray path. The a,,gle of incidence 01 Is shown in Figure 6.
Also, the do(01) and dn(QO) in (58) denote the widths of the surface riy tube at 01 and 02, respectIvely; the
surface ray tube is forme by considering a pair of rays adjacent to the central *ay aq in Figure 11. The
geodesic surface ray paths are easy to find on cylinders, spheres, and cones. For example, the geodesic paths
on a convex cylinder are helical; whereas, they are great circle paths on a sphere. For more general convex
surfaces, the geodesic surface ray paths must 'e found numerically. The distance arameter L In (66) and (67)
is given by

pn(0l) +i01) s(p610+s

I (Pj(01)+%)(*40 1 )+s) * h 0l (68)

where:

rI . sdl i incident wavefront radius of curvature
sSS z ISS ; in the direction at 01 (69;70)

r
The dfstance s In (68) may he obtained by projecting (

5
d) on the SSR if the observation point within the

(lito) side of the SS8 transition region does not move in a predet~rAdned mnner. If the O)servation point
qolc~ro5ss the SS8 in a prenetermined fashion then it is clear that s to (68;63) .in he found unafiiguously.

The p (It) and p4(O) in (68) denote the principal radii of curvatore of thp Inddevt oavefronrt at 01. and101drt aero a 1 n

p,, which is defined in (70), has been introduced earlier in ((rI)5. For the special case of point source or
s)herical wave illumination, the L in (66) and (67) simplifies to:

s's

L s'+s , for spherical wave illumination, (71)

where:

S, distance from the point source t0 the (72)
11 20 = %'(91)) = 'point of grazing incidence at 01.

In the case of plane wave Illuminatio., s' and hence (71) above simplifies to:
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L s s for plane wave illumination. (73)

If the incident waVefront Is of the converging p, < 0, or converging-diverging (p< 0; 0) type,then the parameter L in (68) can become negative. It his not been fully investigatedh the geogeral
solution can be completed if L becomes negative. On the other hand, if one of the principal directions of the
incident wavefront coincides with one of the principal planes of the surface at grazing, then one can treat a

converging, or converging-diverging (saddle) type wavefront for which L<O, by replacing F(X1 d) with

F*(IxL'dl). Note that the asterisk on F* denotes the complex conjugate operator. The use of F*(IXL'dI) when

L<O leads to a continuous total field at SS8 In this case.

The above UTO result remains accurate outside the paraxial (i.e. near axial) regions of quasi-cylindrical
or elongated convex surfaces; a different solution is required in these regions and it has not yet been
completed. It is assumed that the source and observation points are not too close to the surface. Also, it
is assumed that any caustics of the incident ray system are not too close to the surface. Furthermore, the
amplitude of the incident field is assumed to be slowly varying at I and 01; otherwise, it is necessary to
add a slope diffraction contribution. The 1JTD solution described above remains accurate if kL and m are
sufficiently large. Typically kL should be larger than 3 although In some cases kL can be made smaller. Also
im should be such that 2m3>5 or so: however, the results generally lose their accuracy slowly as 2m

3 
becomes

smaller. It is noted that the angular extent of the SSR transition region is of order -I radians.

Asurface diffracted field of the type Ed(Ps) can also he present in the lit zone if the surface is

closed; this may he seen by noting that the field cf the type Ed can propagate around the closed surface.

Also. additional contributions to •d(p ) can he prese,.t in the shadow zone for a closed surface because
surface diffracted rays can be initiatid at all points of grazing incidence on that closed surface;
furthermore, these surface rays can undergo multiple encirclements around the closed body. However, these

additional surface diffracted ray contributions are generally quite weak in comparison to the Fgr contribution
within the lit zone for surfaces which are quite large in terms of the wavelength; hence their contribution
may be neglected in such cases.

The parameters tL, t. XL and Xd become small as one approaches the surface shadow boundary, SSB. from
both the lit and shadow regioný. As one approaches the SSB. the small argument limiting form of the
transition function F(X) which has been introduced previously in (44) becomes helpful for verifying the
continuity of the total high frequency field at the SSR. On the other hand, the above parameters become large
as one moves outside the SSB transition region; in this case F(X)-1 for large X, and likewise.

"h )( "~/c• ej63/12
hS 6 IW 4 (74)

e 
4  N 16 e qe'jSn/6

t S M r , n ? [ A i ' (- q d ) J( 7 5

f 5 ( )s { ji/4 Jv/6 aj e1 6 '
e N e e

whero P - 2 is generally sufficient to compute 's() accurately for 6>0 in (75). In (7S) and Table 11, the

h d
Mtiler type Airy function Ai(T) - V(•)//, and Ai (c) - T- Ai(). Thus, upon incorporating the limiting
val-Aes .f 174) and (75), which are valid outside the SSR fransitio' .jion, into (57) and (58) and replacing
F(X) by it's asymptotic value of unity, it is clear (batLis re'"tes to Rs I outside the SSB transition

"region so that "(P r(p ) of GO, and likewise d(P ). E(p ) therein. respectively, in which the KellerSregion So that EgP(PL) d(pL ) of G. avnd byews E P31 *•(

surfaced diffracted ray field £k(PsI is jiven by [31
SE•(s)- Ei(O1 ). •k(Q 1 ,Oe e~jkt dn(O " Ps e.jksd (6

(S) - = e (76)
k dn(Oe) s d(p +)

?s

Tk b b Ts + n1 0 Tn (77)

where

-. 0 " •t')dt,
01 n

T • A 1 n (02) (78)
A n.1 n n
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The DR and A are the Keller's GTO diffraction coefficients and attenuation constants for the nth soft (s) orn n

hard (h) surface ray mode. Thus, in the GTO, the surface ray field consists of surface ray modes which
propagate independently of one another. Also, this surface ray field is not the true field on the surface; it

is a boundary layer field. The DA and - A are given by:
n n

e-J(1/12)
s 2 . i__

[on (Q)M 4 1(q) [Ai'(-qn )]2 (79a)

e -J(w/12)
h 2 m() •nAi'gnl (79b)

12

and

qn0r if eV(/. a h in V(Ie(81

inwic risa'n (2) and

P9T 1 e- (80a380b)

In (79) - (80). Q is any point on the geodesic surface ray pathn The GTs result of (76) in terms of (77) and
r(78) is not valid with he SSa transition region.

The s i result for the 3- 0 configuration can be simply ndifiee to recover the corresponding UTO result

or the 2-i case by allowing the caustic distances a( and ob In (55) and (56) to receed to Infinityh

Pc e spo if Pexac and P(gefnto (81)
S~so that

[giL)~•IO).[s l RL h r• e/],Jp~ -ksr (82)

In which tr ts as en (23), and

Ed(pS). ri (01 ). [As• + dh ýl;1 nz] eksd , (83)

some (bo h b2 ca for the 2-n case (note: wev,)). The r and in (82) and (83) are as defined earlier.h h

respectivelyo only the L appearing in (66) and (67) os given by

L A s us l o for the 2-0 case, (84)

where s' is the distance from the 2-c 1ir e source to the polint on [r11ng incidence at and s Fg sdue1. as

before. A comparison of the UTond a penetrabl dlra 2-0 circular cylinder Illuminated by a nearby line
source is illustrated in Figures 1 f(a) and 16(h); those UTD solutions are thern compared with the
corresponding exact (Eigenfuncttion) solutions in Figures 17(a) and 17(b) o

111. A FEW ADDITIONAL UTD SOL.UTIONS AND) SOME APPLICATIONlS

In addition to the basic UeTo edge and convex surface diffraction solutions described above, UTr solutions
for some other canonical shapes also exist; however, the latter are not described here because of space
limitations. UTi type solutions for the radiation and i tual couplingute aiat tusantennas on a smooth
convex surface are given in r16-19t ; also, an approximate vertex diffraction solution may be found in[6,11,20",. A result based on a recently obtained approximate UTO solution for the field scattered by a fully

illuminated, semi-infinite, right-circular perfectly-conducting cone [?i2 is shown in Figure 18. Also, UTOresults 7or the 3-D diffraction by a penetrable dielectric/ferrite s~rip In Figure 19 based on the weork in
(221 are shown in Figures 20 and 21, for parallel and perpendicular palarization of the incident field,

respectively. It is noted therein that even though the Incident fields are TEZ or T4z, the scattered fields
are not simply TEz or Tbz due to a coupling between the two which is introduced by toe dielectric edge when
Ohio/2. Finally, Figures 22 Fnd 23 show the appliaation of UTO to deal with aore realisic shapes 23,241.The ogival shape in Figure 22 has a circular duct on it. In Figure 23, the aircraft fuselage is rwdeled by a
best fit prolate spheroid near the antenna location, a more recent calculation employs a composite ellipsoid
fuselage model (25].
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