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CALCULATIOIl OF AIRBLAST FROM UNDERGROUND
AMMUNITION STORAGE MAGAZINES

I. INTRODUCTION

The storage of munitions in underground facilities
provides a potential hazard to surrounding buildings or
populations. Current placement of such facilities relative to
above-ground structures is based on long standing curves and
scaling relations for the peak airblast overpressure as a
function of weight of explosives and distance and angle
relative to the tunnel opening. The suggested scaling relation

for a 50 -mbar safety criterion is

where d is the distance to 50 mbar (m)
D is the main tunnel diameter (m)

Po is the gas pressure in the main passageway (bars)

and F 1is a tabulated directional factor .

This relationship is based on a variety of explosive
weight-to-volume ratios. However, recent storage designs call
for larger amounts of explosives and lower explosive storage
densities than were considered in developing the relationship.
It has not been demonstrated that the same relation holds for
these new conditions. 1In addition, the high cost of real
estate suggests that small changes in the safe distances will

have a significant financial impact on the storage of munitions.

A coordinated program of experiments and calculations

is being conducted by the Norwegian Defence Construction



Service (HNDCS) to reduce the uncertainties in determination of
safe distances and to define the angular distribution of
overpressure. As a part of this program, S-CUBED provided
hydrodynamic flow calculations of the detonation, internal
propagation and external expansion of blast waves in a two-
dimensional model designed to simulate the NDCS experiment,
"'fest 1". The calculation was done in four consecutive phases,
which are described in the next four sections. Codes used were
HULL, a two or three dimensional, state-of-the-art, finite
difference Eulerian hydrodynamic flow program; SAP (Spherical
Air PUFF), a one-dimensional, spherically-symmetric version of
HULL; and NLAWS, an acoustic wave propagation code. Using
multiple phases in this way, efficiency of computer time is
maximized while essential features of the result are retained.
This summary report provides a description of the calculation

and presents the results that were obtained.



II. PHASE 1l: DETONATION AND INTERIOR PROPAGATION

The first phase of the calculation included detonation
of an explosive in an enclosed region which was designed to simu-
late the interior tunnel complex of the NDCS test model. Propagation
of blast waves in the enclosed chambers and exit of blast pressure
at the tunnel mouth were monitored from time zero (initiation of

the detonation) to 4.24 msec after detonation.

The calculational configuration used for this phase is
illustrated in Figure 1. The calculational mesh is a rectangular
grid in two-dimensions. The HULL code was used for this phase, as
well as for Phase 2. 1In order to simulate the three-dimensional
test chamber in two dimensions, it was necessary to change the
orientations of the detonation and expansion chambers. 1In the
test configuration, the entranceway and expansion chamber are
oriented so that their long axes are horizontal and perpendicular
to each other. The explosive chamber axis is vertical. In the
calculational configuration, the right angle orientations are

retained, but all chambers lie in the same plane.

Also because the coordinate system is rectangular while
some of the test chambers have circular cross sections, it was
necessary to adjust the dimensions slightly in order to maintain
the appropriate cross-sectional areas and chamber volumes. If the
unit depth (into the paper in Figure 1) is assumed to be 5 cm,
then all of the chamber cross sections and volumes are the same as
for the test configuration. The total internal volume of the complex
is 17,212 cm®. Dimensions of the undetonated explosive were also
adjusted so that, using the same 5-cm depth and a density of
1.66 gms/cm®, the mass of the charge was 200 gms, corresponding
to that used in the test.

Grid size for this calculation is approximately 0.5 cm
vertically by 0.8 cm horizontally, although adjustments were made
so that cell boundaries would coincide with the previously deter-

mined material boundaries. There are 70x376, or approximately
26,000, calculational cells in the grid.

)
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The calculation was begun at a time set arbitrarily
to 10 uysec. At this time, the calculational zone at the
right-hand edge of the explosive was considered to be deton-
ated. The detonation wave progressed through the explosive

from right to left as the calculation proceeded.

Two types of graphical output are routinely provided
by HULL, and selected examples are included in this report.
The first is "contour" plots, in which isograms of any of the
hydrodynamic variables are shown throughout the region of
interest. Figures 2 through 9 are contour plots of pressure
and energy at four different times during the interior calcu-
lation. In Figures 2 and 3, at 150 usec, it can be seen that
the explosive has detonated but the energy has not vet started
to escape from the explosive chamber. Pressure and energy

values throughout the chamber are very high.

In Figures 4 and 5, at 340 usec, a shock wave has
traveled through the narrow passageway, reflected from the
left-hand side of the vertical chamber, and is moving down-
ward. Pressures are very high at the left-hand side of the
vertical chamber where the flow has stagnated, and reflected

shocks from the corners are visible in the explosive chamber.

The next two figures, 6 and 7, illustrate the situa-
tion of 500 psec. At this time, energy is moving down the
long entrance tunnel. The interesting point about the flow
in this'region is that the energy contours are not perpendi-
cular to the tunnel walls. Because of the right-angle bend,

energies are higher near the bottom of the tunnel.

The last set of contour plots was made at 900 usec,
and is shown in Figures 8 and 9. 1In this set, the shock has
reached the tunnel entrance and is expanding as it moves

into the exterior space.
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The second type of output is probably of more imme-
diate interest in this application because it is directly
comparable to experimental results. "Stations" are predeter-
mined locations in the calculational grid at which hydro-
dynamic data are monitored as functions of time. For the
interior phase calculation, stations were placed at measuring
points corresponding to those in the NDCS test. These are
the points labeled 1 through 5 in Figure 1. Additional
stations were positioned at the tunnel entrance and at other
points throughout the calculational grid. Stations 28, 29
and 30 are of particular interest because they are the ones
used to drive the second phase of the calculation. Their

locations are also shown in Figure 1.

Figures 10 through 14 are overpressure versus time
records at Stations 1 through 5. The first three, which are
in the explosive and vertical chambers and the connecting
tunnel between them, show a large initial spike followed by
many smaller peaks. The latter are due to reflections from
the chamber walls. Stations 4 and 5, for which the over-
pressure records are shown in Figures 13 and 14, are located
in the entrance tunnel. The records show many sharp spikes,
which are a result of the mixture of air and detonation
products flowing in this region. The maximum overpressure
in the entrance tunnel is about 80 bars. At Measuring Point

5, the density versus time record is given in Figure 15.

14
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Parameters at the tunnel entrance (Stations 28, 29
and 30) are shown in Figures 16 through 21. For these stations,
the horizontal flow velocities versus time are given as well
as the overpressures. Note that these velocities are negative
because flow through the portal is in the "-x" direction.
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III. PHASE 2: EXPANSION INTO EXTERIOR REGION

In order to model the exterior region, a computational
mesh was set up using cylindrical coordinates. The mesh con-
sists of 182x176 zones, for a total of 31,304. The overall
grid dimensions are 5.96 m by 5.99 m. A 100x100 cell subgrid,
in which the size of each cell is approximately 0.49x0.8 cm,
was defined on the cylindrical axis at the tunnel opening.
Beyond the subgrid, cell size is expanded by about 5 percent
per cell in each direction. Stations were located at intervals

along radial lines from the tunnel exit.

The configuration is illustrated in Figure 22.. For
this phase, a plane through the axis of symmetry, which can
be thought of as a flat, perfectly reflecting surface, becomes
the ground plane. The tunnel opening and cliff face become
cylindrical sections when converted from Cartesian to cylin-
drical coordinates. The radius of the opening was adjusted so
that the cross-sectional area of the half-disk opening in
cylindrical coordinates is equal to the rectangular 5x6 cm

tunnel opening of Phase 1.

The cliff face was modeled by placing a row of "island"
cells along the bottom of the mesh. An island is a non-compres-
sible, reflective cell of the same type as were used in Phase 1
for the tunnel walls. The configuration, it should be noted,
is rotated by 90 degrees from that of Phase 1, so that direc-

tion of flow is upward in Figure 22.

The calculation was initiated at 0.7 msec by setting
the hydrodynamic parameters in the cells at the tunnel opening
to those read from the station records of Phase 1. To perform
the transformation, the "-x" velocities of the Phase 1 station

records became the "+y" velocities of the Phase 2 driver cells,
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and +y's became +x's. Interpolation was performed to drive

the cells at locations between stations at appropriate values.

P
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S e
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«
ISLAND
b-4 b3
. mesh
boundary

Figure 22. Calculational Configuration for Phase 2

The second phase calculation was run to 3.1 msec after
detonation of the explosive. By this time, the shock wave
emerging from the tunnel opening had traveled a distance of
1.75 m (5.74'ft) along the axis and had decayed to an over-
pressure of approximately 1.0 bar (l14.5 psi). Figures 23
through 28 illustrate the pressure, density, and energy at
two different times (1.5 and 2.3 msec) during the calculation.
An interesting feature shown by the pressure and density plots
is the development of a Mach-stem-like structure at the inter-
action with the cliff face. The structure, usually observed
only with height-of-burst detonations, is an indication of
flow toward the surface (downward in the picture) as well as

parallel to the surface.
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IV. PHASE 3: ONE~DIMENSIONAL CALCULATIONS

Phase 3 consists of a series of one-dimensional
calculations along lines radiating from the tunnel entrance.
The Phase 3 calculations were done using SAP (Spherical Air
Puff), S-CUBED's version of the one-dimensional Eulerian,
spherical~-symmetry hydrocode originally developed at the Air
Force Weapons Laboratory (AFWL).

At 3.1 msec, as previously mentioned, the Phase 2
two-dimensional calculation was terminated. It was replaced by
a series of one-dimensional calculations along the lines
A'through G shown in Figure 29. The initial conditions for
each Phase 3 calculation were obtained by "cutting" through the
Phase 2 calculational mesh at 3.1 msec. Energy, density and
velocity values were read from zones through which the lines
passed. Interpolation across four adjacent zones was performed
in order to obtain values along the lines. Also, the component
X and y velocities were combined to determine the appropriate
velocity in the direction of the line cut. Phase 2 contour
plots at 3.1 msec, which were used to provide the initial
conditions, are given in Figures 30 through 33. The lines
along which the cuts were taken (approximately every 15 deg)

. are shown in Figure 30.

As each of the SAP calculations proceeded in time, the
waveform defined by the cut was allowed to propagate outward.
The innermost cell was continually reset to conditions from the
late~-time record for Station 29 (Phase 1). The one~dimensional
calculations were continued until a shock front peak over-
pressure of less than 250 mbar, or 3.62 psi, was reached. This
occurred at times between 12.0 and 12.5 msec. After 4.2 msec,

when the Station 29 record ended, constant values of the
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parameters equal to those at the last time for Station 29

(4.2 msec) were maintained at the inner edge of the SAP grid.
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Figures 34 through 40 are overpressure versus range
plots, one for each of the seven SAP calculations, at the final
time for that calculation. These range plots provided the
waveforms from which inputs for NLAWS, the acoustic wave

propagation code used in Phase 4, were defined.
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V. PHASE 4: NONLINEAR ACOUSTIC WAVE SOLUTION (NLAWS)

NLAWS is a code which treats the airblast waveform
as an acoustic wave. The code assumes an ideal triangular
waveform input with an infinitely sharp rise to a positive
overpressure and then a monotonic decay to zero. The triangu-
lar wave is then propagated acoustically until it has attenuated
to the desired level. NLAWS was written at the Air Force
Weapons Laboratory and is used to find the peak overpressure

and velocity at ranges below approximately 280 mbar (4 psi).

The NLAWS program was run for each of the one-
dimensional calculations, beginning at the last time from the
SAP calculations of Phase 3. The objective was to determine
a range at which the peak overpressure would have attenuated
to 50 mbar. Because the input waveform for NLAWS must be
triangular, waveforms from the SAP one-dimensional calculations
had to be modified. This was done in the following manner.
First, a vertical line was drawn through the mid-point of the
first rise on the SAP waveform. 1In Figure 41, this line is
designated "LINE 1". Second, a representative slope was
chosen on the falling portion on the wave, and a line was
drawn tangent to the sloping portion (illustrated by "LINE 2"
in Figure 41). These two lines defined a peak overpressure
and a positive phase duration for input to NLAWS. Because
there was some uncertainty about the choice of the tangent
line, a second line (LINE 3) was chosen and a second NLAWS
calculation was performed. Choosing the input waveform in
this manner eliminates numerical shock-front smearing and
any numerical overshoot from the hydrocode results. The two
different NLAWS calculations provide an estimate of the

accuracy of the results.
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The procedure described previously was applied to
each of the seven waveforms from the SAP calculations given
in the last section. 1In cases such as that for the 45 deg
line (Figure 37), in which waveform consisted of two distinct
pulses, only the first (and largest) was used. Under acoustic
conditions, all parts of a wave propagate at the same speed,
thus there is no overtaking of the front-running portions by

those following.
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VI. CONCLUSIONS

The peak-overpressure versus range listings generated
by HLAWS as described in the previous section were interpolated
as necessary to determine the range at which this peak falls
below 50-mbars. Because two sets of input conditions were
defined, a spread in range was obtained at each angle. The
results are shown in Figure 42 (outer curve). As can be seen,
for positions directly in front of the tunnel entrance (0 deqg),
a distance of 17 meters is required to assure that the peak
overpressure experienced will be less than 50 mbars. For
off-axis positions, 16 meters is sufficient at 15 and 30 deg
and 14 meters at 45 deg. At angles of 60 deg or greater, only
1l meters is required. For the full-scale situation of
interest, in which 200,000 kgm of explosive are detonated, all
distances would be scaled up by a factor of 100.

The inner curve in Figure 42 defines the 200-mbar peak
overpressure distances. This curve was determined in exactly
the same way as the 50-mbar curve, except that in this case the
results were taken from the early part of the NLAWS run or, at

several of the angles, directly from the SAP results.
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