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CALCULATION OF AIRBLAST FROM UNDERGROUND 

AMMUNITION STORAGE MAGAZINES 

I.  INTRODUCTION 

The storage of munitions in underground facilities 

provides a potential hazard to surrounding buildings or 

populations.  Current placement of such facilities relative to 

above-ground structures is based on long standing curves and 

scaling relations for the peak airblast overpressure as a 

function of weight of explosives and distance and angle 

relative to the tunnel opening.  The suggested scaling relation 

for a 50 mbar safety criterion is 

d = D-F.P0-67 
o 

where  d is the distance to 50 mbar (m) 

D is the main tunnel diameter (m) 
Po is the gas Pressure in the main passageway (bars) 

and   F is a tabulated directional factor . 

This relationship is based on a variety of explosive 

weight-to-volume ratios.  However, recent storage designs call 

for larger amounts of explosives and lower explosive storage 

densities than were considered in developing the relationship. 

It has not been demonstrated that the same relation holds for 

these new conditions.  In addition, the high cost of real 

estate suggests that small changes in the safe distances will 

have a significant financial impact on the storage of munitions, 

A coordinated program of experiments and calculations 

is being conducted by the Norwegian Defence Construction 



Service (NDCS) to reduce the uncertainties in determination of 

safe distances and to define the angular distribution of 

overpressure.  As a part of this program, S-CUBED provided 

hydrodynamic flow calculations of the detonation, internal 

propagation and external expansion of blast waves in a two- 

dimensional model designed to simulate the NDCS experiment, 

"Test 1".  The calculation was done in four consecutive phases, 

which are described in the next four sections.  Codes used were 

HULL, a two or three dimensional, state-of-the-art, finite 

difference Eulerian hydrodynamic flow program; SAP (Spherical 

Air PUFF), a one-dimensional, spherically-symmetric version of 

HULL; and NLAWS, an acoustic wave propagation code.  Using 

multiple phases in this way, efficiency of computer time is 

maximized while essential features of the result are retained. 

This summary report provides a description of the calculation 

and presents the results that were obtained. 



II.  PHASE 1:  DETONATION AND INTERIOR PROPAGATION 

The first phase of the calculation included detonation 

of an explosive in an enclosed region which was designed to simu- 

late the interior tunnel complex of the NDCS test model. Propagation 

of blast waves in the enclosed chambers and exit of blast pressure 

at the tunnel mouth were monitored from time zero (initiation of 

the detonation) to 4.24 msec after detonation. 

The calculational configuration used for this phase is 

illustrated in Figure 1.  The calculational mesh is a rectangular 

grid in two-dimensions.  The HULL code was used for this phase, as 

well as for Phase 2.  In order to simulate the three-dimensional 

test chamber in two dimensions, it was necessary to change the 

orientations of the detonation and expansion chambers.  In the 

test configuration, the entranceway and expansion chamber are 

oriented so that their long axes are horizontal and perpendicular 

to each other.  The explosive chamber axis is vertical.  In the 

calculational configuration, the right angle orientations are 

retained, but all chambers lie in the same plane. 

Also because the coordinate system is rectangular while 

some of the test chambers have circular cross sections, it was 

necessary to adjust the dimensions slightly in order to maintain 

the appropriate cross-sectional areas and chamber volumes.  If the 

unit depth (into the paper in Figure 1) is assumed to be 5 cm, 

then all of the chamber cross sections and volumes are the same as 

for the test configuration. The total internal volume of the complex 

is 17,212 cm3. Dimensions of the undetonated explosive were also 

adjusted so that, using the same 5-cm depth and a density of 

1.66 gms/cm3, the mass of the charge was 200 gms, corresponding 

to that used in the test. 

Grid size for this calculation is approximately 0.5 cm 

vertically by 0.8 cm horizontally, although adjustments were made 

so that cell boundaries would coincide with the previously deter- 

mined material boundaries.  There are 70x376, or approximately 
26,000, calculational cells in the grid. 
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The calculation was begun at a time set arbitrarily 

to 10 ysec.  At this time, the calculational zone at the 

right-hand edge of the explosive was considered to be deton- 

ated.  The detonation wave progressed through the explosive 

from right to left as the calculation proceeded. 

Two types of graphical output are routinely provided 

by HULL, and selected examples are included in this report. 

The first is "contour" plots, in which isograms of any of the 

hydrodynamic variables are shown throughout the region of 

interest.  Figures 2 through 9 are contour plots of pressure 

and energy at four different times during the interior calcu- 

lation.  In Figures 2 and 3, at 150 ysec, it can be seen that 

the explosive has detonated but the energy has not yet started 

to escape from the explosive chamber.  Pressure and energy 

values throughout the chamber are very high. 

In Figures 4 and 5, at 340 ysec, a shock wave has 

traveled through the narrow passageway, reflected from the 

left-hand side of the vertical chamber, and is moving down- 

ward.  Pressures are very high at the left-hand side of the 

vertical chamber where the flow has stagnated, and reflected 

shocks from the corners are visible in the explosive chamber. 

The next two figures, 6 and 7, illustrate the situa- 

tion of 500 ysec.  At this time, energy is moving down the 

long entrance tunnel.  The interesting point about the flow 

in this region is that the energy contours are not perpendi- 

cular to the tunnel walls.  Because of the right-angle bend, 

energies are higher near the bottom of the tunnel. 

The last set of contour plots was made at 900 ysec, 

and is shown in Figures 8 and 9.  In this set, the shock has 

reached the tunnel entrance and is expanding as it moves 

into the exterior space. 
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The second type of output is probably of more imme- 

diate interest in this application because it is directly 

comparable to experimental results.  "Stations" are predeter- 

mined locations in the calculational grid at which hydro- 

dynamic data are monitored as functions of time.  For the 

interior phase calculation, stations were placed at measuring 

points corresponding to those in the NDCS test.  These are 

the points labeled 1 through 5 in Figure 1.  Additional 

stations were positioned at the tunnel entrance and at other 

points throughout the calculational grid.  Stations 28, 29 

and 30 are of particular interest because they are the ones 

used to drive the second phase of the calculation.  Their 

locations are also shown in Figure 1. 

Figures 10 through 14 are overpressure versus time 

records at Stations 1 through 5.  The first three, which are 

in the explosive and vertical chambers and the connecting 

tunnel between them, show a large initial spike followed by 

many smaller peaks.  The latter are due to reflections from 

the chamber walls.  Stations 4 and 5, for which the over- 

pressure records are shown in Figures 13 and 14, are located 

in the entrance tunnel.  The records show many sharp spikes, 

which are a result of the mixture of air and detonation 

products flowing in this region.  The maximum overpressure 

in the entrance tunnel is about 80 bars.  At Measuring Point 

5, the density versus time record is given in Figure 15. 
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Parameters at the tunnel entrance (Stations 28, 29 

and 30) are shown in Figures 16 through 21.  For these stations, 

the horizontal flow velocities versus time are given as well 

as the overpressures.  Note that these velocities are negative 

because flow through the portal is in the "-x" direction. 
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III.  PHASE 2:  EXPANSION INTO EXTERIOR REGION 

In order to model the exterior region, a computational 

mesh was set up using cylindrical coordinates.  The mesh con- 

sists of 182x176 zones, for a total of 31,304.  The overall 

grid dimensions are 5.96 m by 5.99 m.  A 100x100 cell subgrid, 

in which the size of each cell is approximately 0.49x0.8 cm, 

was defined on the cylindrical axis at the tunnel opening. 

Beyond the subgrid, cell size is expanded by about 5 percent 

per cell in each direction.  Stations were located at intervals 

along radial lines from the tunnel exit. 

The configuration is illustrated in Figure 22.  For 

this phase, a plane through the axis of symmetry, which can 

be thought of as a flat, perfectly reflecting surface, becomes 

the ground plane.  The tunnel opening and cliff face become 

cylindrical sections when converted from Cartesian to cylin- 

drical coordinates.  The radius of the opening was adjusted so 

that the cross-sectional area of the half-disk opening in 

cylindrical coordinates is equal to the rectangular 5x6 cm 

tunnel opening of Phase 1. 

The cliff face was modeled by placing a row of "island" 

cells along the bottom of the mesh.  An island is a non-compres- 

sible, reflective cell of the same type as were used in Phase 1 

for the tunnel walls.  The configuration, it should be noted, 

is rotated by 90 degrees from that of Phase 1, so that direc- 

tion of flow is upward in Figure 22. 

The calculation was initiated at 0.7 msec by setting 

the hydrodynamic parameters in the cells at the tunnel opening 

to those read from the station records of Phase 1.  To perform 

the transformation, the "-x" velocities of the Phase 1 station 

records became the "+y" velocities of the Phase 2 driver cells. 
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and +y's became +xls.  Interpolation was performed to drive 

the cells at locations between stations at appropriate values. 
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Figure 22-  Calculational Configuration for Phase 2 

The second phase calculation was run to 3.1 msec after 

detonation of the explosive.  By this time, the shock wave 

emerging from the tunnel opening had traveled a distance of 

1.75 m (5.74 ft) along the axis and had decayed to an over- 

pressure of approximately 1.0 bar (14.5 psi).  Figures 23 

through 28 illustrate the pressure, density, and energy at 

two different times (1.5 and 2.3 msec) during the calculation. 

An interesting feature shown by the pressure and density plots 

is the development of a Mach-stem-like structure at the inter- 

action with the cliff face.  The structure, usually observed 

only with height-of-burst detonations, is an indication of 

flow toward the surface (downward in the picture) as well as 

parallel to the surface. 
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IV.  PHASE 3:  ONE-DIMENSIONAL CALCULATIONS 

Phase 3 consists of a series of one-dimensional 

calculations along lines radiating from the tunnel entrance. 

The Phase 3 calculations were done using SAP (Spherical Air 

Puff), S-CUBED's version of the one-dimensional Eulerian, 

spherical-symmetry hydrocode originally developed at the Air 

Force Weapons Laboratory (AFWL). 

At 3.1 msec, as previously mentioned, the Phase 2 

two-dimensional calculation was terminated.  It was replaced by 

a series of one-dimensional calculations along the lines 

A through G shown in Figure 29.  The initial conditions for 

each Phase 3 calculation were obtained by "cutting" through the 

Phase 2 calculational mesh at 3.1 msec.  Energy, density and 

velocity values were read from zones through which the lines 

passed.  Interpolation across four adjacent zones was performed 

in order to obtain values along the lines.  Also, the component 

x and y velocities were combined to determine the appropriate 

velocity in the direction of the line cut.  Phase 2 contour 

plots at 3.1 msec, which were used to provide the initial 

conditions, are given in Figures 30 through 33.  The lines 

along which the cuts were taken (approximately every 15 deg) 

are shown in Figure 30. 

As each of the SAP calculations proceeded in time, the 

waveform defined by the cut was allowed to propagate outward. 

The innermost cell was continually reset to conditions from the 

late-time record for Station 29 (Phase 1).  The one-dimensional 

calculations were continued until a shock front peak over- 

pressure of less than 250 mbar, or 3.62 psi, was reached.  This 

occurred at times between 12.0 and 12.5 msec.  After 4.2 msec, 

when the Station 29 record ended, constant values of the 
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parameters equal to those at the last time for Station 29 

(4.2 msec) were maintained at the inner edge of the SAP grid. 

Position of Shock 
Front at End of 
2-D Phase 

90 dea 

Figure 29 Calculational Confiauration Showina 
Lines Along Which One-Dimensional 
Calculations Were Performed 
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Figures 34 through 40 are overpressure versus range 

plots, one for each of the seven SAP calculations, at the final 

time for that calculation.  These range plots provided the 

waveforms from which inputs for NLAWS, the acoustic wave 

propagation code used in Phase 4, were defined. 
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V.  PHASE 4:  NONLINEAR ACOUSTIC WAVE SOLUTION (NLAWS) 

NLAWS is a code which treats the airblast waveform 

as an acoustic wave.  The code assumes an ideal triangular 

waveform input with an infinitely sharp rise to a positive 

overpressure and then a monotonic decay to zero.  The triangu- 

lar wave is then propagated acoustically until it has attenuated 

to the desired level.  NLAWS was written at the Air Force 

Weapons Laboratory and is used to find the peak overpressure 

and velocity at ranges below approximately 280 mbar (4 psi). 

The NLAWS program was run for each of the one- 

dimensional calculations, beginning at the last time from the 

SAP calculations of Phase 3.  The objective was to determine 

a range at which the peak overpressure would have attenuated 

to 50 mbar.  Because the input waveform for NLAWS must be 

triangular, waveforms from the SAP one-dimensional calculations 

had to be modified.  This was done in the following manner. 

First, a vertical line was drawn through the mid-point of the 

first rise on the SAP waveform.  In Figure 41, this line is 

designated "LINE 1".  Second, a representative slope was 

chosen on the falling portion on the wave, and a line was 

drawn tangent to the sloping portion (illustrated by "LINE 2" 

in Figure 41).  These two lines defined a peak overpressure 

and a positive phase duration for input to NLAWS.  Because 

there was some uncertainty about the choice of the tangent 

line, a second line (LINE 3) was chosen and a second NLAWS 

calculation was performed.  Choosing the input waveform in 

this manner eliminates numerical shock-front smearing and 

any numerical overshoot from the hydrocode results.  The two 

different NLAWS calculations provide an estimate of the 

accuracy of the results. 
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The procedure described previously was applied to 

each of the seven waveforms from the SAP calculations given 

in the last section.  In cases such as that for the 45 deg 

line (Figure 37), in which waveform consisted of two distinct 

pulses, only the first (and largest) was used.  Under acoustic 

conditions, all parts of a wave propagate at the same speed, 

thus there is no overtaking of the front-running portions by 

those following. 
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VI.  CONCLUSIONS 

The peak-overpressure versus range listings generated 

by NLAW3 as described in the previous section were interpolated 

as necessary to determine the range at which this peak falls 

below SG-mbars,  Because two sets of input conditions were 

defined, a spread in range was obtained at each angle.  The 

results are shown in Figure 42 (outer curve).  As can be seen, 

for positions directly in front of the tunnel entrance (0 deg), 

a distance of 17 meters is required to assure that the peak 

overpressure experienced will be less than 50 mbars.  For 

off-axis positions, 16 meters is sufficient at 15 and 30 deg 

and 14 meters at 45 deg.  At angles of 60 deg or greater, only 

11 meters is required.  For the full-scale situation of 

interest, in which 200,000 kgm of explosive are detonated, all 

distances would be scaled up by a factor of 100. 

The inner curve in Figure 42 defines the 200-mbar peak 

overpressure distances.  This curve was determined in exactly 

the same way as the 50-mbar curve, except that in this case the 

results were taken from the early part of the NLAWS run or, at 

several of the angles, directly from the SAP results. 
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