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Abstract

A Bayesian approach to the problem of comparing experts or expert systems
is presented. The question of who is an expert is considered and comparisons
among well-calibrated experts are studied. The concept of refinement. in various
equivalent forms, is used in this study. An informative example of the combination
of the opinions of well-calibrated experts is described. Total orderings of the class

of well-calibrated experts are derived from strictly proper scoring rules.
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tems, combining opinion, scoring rules. -

('Y a8

L RS S S8 5 P o ¢ BRR Wt o Y as e aw 86

L I 3 W N A e ¢

LU U

[ DS



8.6 8,69 8850 07§00 ala tiatata"atataR tak o gt Nah 000 S0 aY AN SaT A4t Uak Sabng€ a0 B Bad 0ab Sab Aol S8 008 od 2a8 ok 2a8 Sof Bab S bl Rl del dadetel il alchalnliadh i At dh et

1 Introduction

In the fields of artificial intelligence and expert systems, the necessity of assess-
ing uncertainty and of coping with that uncertainty by developing methods for
decision making under uncertainty are now widely recognized. In this paper. I
| will argue in favor of the Bavesian approach to assessing uncertainty. and then
describe some \'va_vs in which this approach can be used to compare experts or
expert systems.

The argument in favor of the Bavesian approach proceeds in two steps: (1)
The quantitative assessment of uncertainty is in itself a sterile exercise unless that

assessment is to be used to make decisions. (2) The Bavesian approach provides<

the only coherent methodology for decision making under uncertainty (see. e.q..
Savage, 1954; DeGroot, 1970; or Lindley. 1987).

The Bayesian approach to the assessment of uncertainty is defined to be the
approach in which any uncertainty about the values of various quantities on the
part of the decision maker or the person receiving information from an expert or
an expert system is represented by the person’s subjective joint probability dis-
tribution for those values. Indeed. in the fields of artificial intelligence and expert
systems, the terms “Bayesian approach™ and “probability approach™ are often
used interchangeably. This usage is appropriate because the Bavesian approach is

not characterized. as is sometimes stated, hy the repeated use of Bayes’ Theorem.
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but by the ubiquitous specification of probabilities to represent uncertainty.

Two other approaches to the representation of uncertainty in expert systems
that have been widely discussed are helief functions (Shafer, 1976. 1982, 1987) and
fuzzy logic (Zadeh, 1979. 1983). Both of these approaches can provide reasonable
approximations to probability under special conditions when it is not necessary
for a decisiop maker to specify a fully-detailed. high-dimensional joint probability
distribution for all of the quantities about which he or she is uncertain in order
to be able to choose an effective decision. In general. however. neither of these
approaches provides a coherent operational meaning in all decision problems. the
way probability does.

Belief functions are closely related to the concept of upper and lower probabil-
ities (Dempster. 1967), whereby the unique probability of an event is replaced hy
an upper and a lower probability. However. has always seemed to me to be a step
in the wrong direction to say that because it is too difficult to specify a precise
number for the probability of some event, we will specify fwo precise numbers.

There is little doubt that all of these approaches can contribute to the insights
that can be gained from a thorough analysis of a particular situation. But. unfor-
tunately there is a tendency on the part of people. includigg scientists, to view the
world as a dichotomy comprising, on the one hand: the group to which they he-
long, and on the other, everyone else. Thus, those who follow a Bayesian approach

consider the world to be divided into Bayesians and non-Bayesians. | suppose that



those who work with belief functions consider the world to be divided into he-
lievers and nonbelievers. It is a tribute to the talent and charisma of Professor

Zadeh that so many scientists identify with a group that can only be called “fuzzy

thinkers.” when the rest of the world must be “clear thinkers.” It is from such a

dichotomous outlook that the Bayesian approach is adopted here.

- —

In this paper we will restrict ourselves to problems in which you must determine

vour subjective probability of some event R. such as the probability that it will

;
B
b rain tomorrow in some particular location. or the probability that a particular
N

patient has a certain disorder. It is assumed that you can consult an expert or an
|
h 0 iy .
b expert system to guide vour evaluation of this probability. Thus. yvou will want
"
)

to combine the expert’s prediction, i.e., the expert’s probahility of R. with your

own information to get your posterior probability of R.

In Section 2 we consider the question of who should be considered an expert
and define the class of well-calibrated experts. In Section 3 we describe a perfect
forecaster and a useless forecaster and introduce the problem of comparing well-

calibrated experts. In Section 4 we induce a partial ordering in the class of well-

calibrated experts by means of the concept of refinement and present several
theoremns that give equivalent ways of describing this partial ordering. In Section 3.
we show how combining the predictions of two relatively imprecise well-calibrated

experts can yield perfect predictions. Finally, in Section 6, we show how a total

ordering in the class of well-calibrated experts that preserves the partial ordering
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already obtained can be induced by means of the concept of strictly pruper scoring

rules.

2 Who is an expert?

We continue to consider the situation in which you must determine your subjective
probability of some specific future event, and vou can consult an expert (or an
expert system) and obtain the prediction. i.e.. the probability. of that expert. The
question arises in this context as to just who should be regarded as an expert.
Somewhat surprisingly, most articles regarding the evaluation. comparison. or
combination of expert opinion, including my own articles, do not consider this
question at all. Some exceptions to this silence are Morris (1974). who states that
“We shall refer to ...a person who provides a judgment concerning uncertain
matters as an expert,” and Morris (1977), who defines an expert “to mean anyone
with special knowledge about an uncertain quantity or event.” Schervish (1984)
writes, “... we understand the word erperfin a very loose sense. We will assume .\
1s an unknown quantity of interest. and we will call an expert anyone who is willing
and able to state some aspect of their subjective distribution for X.” Winkler
(1986) describes a “notion of goodness™ of a probability appraiser which he calls
“expertise” and which “relates to the degree to which the probability appraiser

can approach perfect forecasts.” This concept of expertise is closely related to the
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concepts of calibration and refinement to be discussed in the subsequent sections
of this paper.

Two extreme definitions of an expert seem possible. At one extreme. in the
spirit of the authors just mentioned. we could define an expert to be anvone or
any system that will give you a prediction.

At the other extreme. in this paper we will define an expert to be someone
whose prediction you will simply adopt as your own posterior probability without
modification. This will be the case if vou believe that the expert has all of the

information that you have that may he relevant to the occurrence or nonoccurren-e

of the event, and possibly additional information as well, and you believe that the
expert processes all of this information in the way that you would process it if you
had the information and the proper technical training. Of course. one way to he
certain that the expert or expert system has all of the information that you have
is to tell it everything that you know that is relevant.

This definition seems satisfactory if you are dealing with just a single adviser.
but it raises conceptual difficulties if two advisers are present. You might very
well be willing to adopt the prediction of either adviser as your own posterior
probability if that was the only prediction available to you. However, after you
have learned the prediction of the first adviser. vou may no longer regard the sec-

ond adviser as an expert according to this definition because, rather than simply

accepting the second adviser’s prediction, you would typically want to combine it
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with the first adviser’s prediction in some way to develop your own overall pos-

terior probability. Nevertheless, in the presence of just a single advisory system.
we can say in accordance with this definition that you have succeeded in building
an expert system for yourself if you will accept its prediction in each case that it
might handle.

In some of the literature (see, e.g.. DeGroot and Eriksson, 1985) an expert or
an expert system is said to he wel! cahitrated if you will adopt its prediction as your
own pos!erior probability. Based on the discussion that has just been given here.
it would be unnecessary to use the term “well calibrated™ in this paper because
that property is now simply the defining characteristic of an expert. Nevertheless,
for the slight cost of being redundant and the great gain of heing clear ahout the
relationship of this paper to other work on the same subject. we will use the term

“well-calibrated expert” to denote an expert or a system of this type.

3 Comparing well-calibrated experts

Well-calibrated experts can exhibit a wide variety of different types of predictive
behavior. Let X denote the prediction that a particular well-calibrated expert will
make in a given situation. In other words, X' is the probabhility that the expert
will state for the occurrence of the event R being predicted. Before you learn the

prediction of the expert, X' is a random variable since you are not certain what
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the expert’s prediction will be.

At one extreme in the class of well-calibrated experts is the perfect forecaster
who makes only the predictions X' = 0 and .\ =1 and who you know is always
correct. In other words, this expert simply states with certainty. and without
error, whether or not the event R will occur. Suppose that vour prior probability
of R is y and let ;' denote your posterior probability of R after learning this
expert's prediction. Then ;' will be either 0 or 1. Since E(p') = y. where the
expectation is taken with respect to vour prior distribution for y'. it follows that
vou must assign probability y to the possibility that the expert’s prediction will
be X' = 1. and probability 1 — y to the possihility that X' = 0.

At the opposite extreme in the class of well-calibrated experts is the useless
forecaster whose prediction you know will be X' = y. In other words. vou know
that this expert is simply going to repeat your own prior probability back to vou.
This situation arises when you regard yourself as your own expert or your own
expert system.

The basic question that we will now discuss is how to compare other well-
calibrated experts whose predictive hehavior lies somewhere between the two ex-
tremes that have just been described. Much of the discussion to be presented is
based on the material in DeGroot and Fienberg (1982, 1983. 1986) and De(Groot
and Eriksson (1985), and further details, proofs, and derivations of the results can

be found in those references.
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In the approach to be followed here, each well-calibrated expert is characterized

by your probability distribution for the expert’s prediction .X'. For simplicity. we -
will assume that X is res!-icted to lie in a given finite subset A" of the closed unit
interval [0. 1]. In effect, we are assuming that the expert’s probahility of R is
always stated to just a fixed number of decimal places. As one example. we are
all familiar with the fact that weather forecasters on American television always
state their probability of precipitation to just a single decimal place. Hence, each
expert can bhe characterized by the discrete probability function (p.f.) 1(.r) of his
or her prediction X.

If the expert reports X = r. then vour posterior probability of R will be r.
Hence, if your prior probability of R is p. then as we have already indicated.
E(X) = p. Thus. the comparison of all well-calibrated experts reduces to the
comparison of all probability distributions on the set A with mean .
Intuitively, it should be clear that the best experts are those about whose
predictions you are most uncertain; i.e., whose predictions are most variable. If
you are fairly certain in advance wiiat prediction the expert will make — i.e.. if
the p.f. v(z) is tightly concentrated around its mean g -— then there is little gain

in consulting the expert. In the next section we shall make this notion rigorous.
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4 Refinement

One well-calibrated expert 4 is said to be af lrast as refined as another well-
calibrated expert B if we can simulate expert B’s prediction from expert A's
prediction and an auxiliary randemization. That is. we can simulate B’s predic-
tion by passing 4's prediction through a noisy channel. Note that this does not
mean that we can reproduce B's actual prediction from knowing .4's prediction.
but rather that we can generate a prediction that has the same stochastic prop-
erties as B's prediction. The technical definition of this concept is hbased on the
following notion of stochastic transformations:

A stochastic transformation h(y | r) is a nonnegative function defined on
X « A" such that

Zh(y ) =1 forevery reX . (4.1)
ved

If the experts 4 and B are characterized by the p.f.'s 1v4(r) and vg(r). then 4 is
defined to be at least as refined as B if there exists a stochastic transformation

h(y | r) such that

E hly | z)va(z) = vply) for yeX (4.2)
reX
Z h(y | x)rvy(r) = yrply) for yeX . (4.3)
reX

The comparison of experts in terms of the concept of refinement is very strong.

In fact it can be shown that if 4 is at least as refined as B and you are given a
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‘ choice between learning the prediction of .1 or the prediction of B. you will prefer
to learn that of A, regardless of the decision problem in which the prediction will
be used; i.e., regardless of your utility function. The price that must be paid for
using this strong method of comparison is that not all experts will be comparable.

In other words. the concept of refinement introduces only a partial ordering in the

T X Y X XA TP

class of p.f.’s v{z) with mean u.

L

It is easy io verify that the perfect forecaster described in Section 2 is at

least as refined as any other well-calibrated expert, and that every well-calibrated

P . W

expert is at least as refined as the useless forecaster described in that section.

We shall now describe several conditions that are equivalent to the proposition

- B OB R O E &

that A is at least as refined as B. Each of these equivalent conditions makes it

~

T T Py SRV —

possible to determine whether or not {4 is at least as refined as B without having

to attempt to construct a stochastic transformation h that satisfies the definition

(4.2) and (4.3).
The theory of refinement is essentially a reformulation of the theory of the
comparison of statistical experiments as developed by Blackwell 11951. 1953).

and from that development we can obtain further characterizations of the desired

type. For any well-calibraced expert. let F denote the distribution function (d.{.)

corresponding to the p.f. v; i.e., let

Fity=" Y w(r) for 0<tel . (4.4)

{rrel r<t} |
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Now consider two arbitrary well-calibrated experts 4 and B, and let F and
Fp denote their d.f.’s. The following result is analogous to Theorem 12.4.1 in
Blackwell and Girshick (1954).

Theorem [. Expert 4 is at least as refined as expert B if and only if

t t
/ Fyr)dr ~ / Fg(r)dr (4.3)
0 0

for all values of f in the interval 0 < f < 1.

The relationship (4.5) between the d.f.’s F; and Fpg i1s known as second-degre.
stochastic dominance (see. e.g., Fishburn and Vickson, 1978).

Now let rg < r; < ... < 7i denote the finite number of points in the set X.
The following equivalent condition can he derived from (4.3):

Theorem 2. Expert A is at least as refined as expert B if and only if

J-1
Z(.t., -z )valz,) = vg(z,)] 20 for j=1..... k-1 . (4.6)

1=0
Another equivalent condition can he presented in terms of the Lorenz curve.
which is defined as follows (see, e.g.. Gastwirth, 1971):
Suppose that F is the d.f. of an arhitrary non-negative random variable and.
for 0 < p < 1, define

F~Yu) =inf{t : F(t) > u} . (4.7)

The function F~! is called the gquantile function corresponding to the d.f. F. If ;i

again represents the mean of the distribution with d.f. F. then the Lorenz curve

11
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L(t) corresponding to the d.f. F is given by
t
L(t) = 1/ FYu)du for 0<t<1 . (4.8)
ji Jo .

For any d.f. F, the Lorenz curve L(t) is a convex. nondecreasing function on

the interval 0 < ¢t < 1 such that L(0) = 0 and L(1) = 1. When F is the d.f. of a

discrete distribution concentrated on just a finite number of points. as is true of

l
»

~

all the d.f.’s we are considering in this paper. then L(#) is also piecewise linear.

o v

.

Now consider again two well-calibrated experts 4 and B. and let L and Lg

N

)

a3

L~

denote the Lorenz curves corresponding to their d.f.'s Fy and Fp.

Theorem 3. Expert A is at least as refined as expert B if and only if

Lyt)< Lg(t) forall 0<t<l . (4.0)

The next two equivalent conditions that will be presented give additional in-

sight into the relationship of refinement. but do not provide a direct way of veri-

) PTELEA AL

fying that this relationship holds.

A

Theorem 4. Expert A is at least as refined as expert B if and only if

R R I

Y gtzivalz) > Y g(r)vp(z) (4.10)
Te& ek E
LK
for every convex function g on the interval (0. 1]. ::4
2
|
Theorem 5. Expert 4 is at least as refined as expert B if and only if there -
X
N

exists a stochastic transformation 5(z | y) such that

zq(r|y)ug(y)=u,;(r) for reX . (4.11)
ye X

12
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Z:n;(:r|y)=y for yeX . (4.12)
reX

Theorem 5 is interesting because it shows that although the definition of A
being more refined than B depends on the existence of a stochastic transformation
from r to y satisfving certain properties. there is an equivalent condition in terms
of a stochastic transformation from y to r satisfying certain other properties.

Results of the type that have been presented here are closely related to the
theory of majorization. as described. for example by Marshall and Olkin (1979).
Indeed. one final equivalent way of saving that A is at least as refined as B is to

say that the p.f. vy majorizes the p.f. 1p.

5 Two experts

As we have stated. if expert 4 is at least as refined as expert B and vou are
given a choice hetween learning either the prediction of expert 4 or the prediction
of expert B (at the same cost). then you will always prefer to learn that of A.
regardless of the use you are going to make of the prediction. However, it should
also be emphasized that if you can learn the prediction of expert B in addition
to the opinion of expert A, then that additional information will often be useful
in the sense that it will further modify your posterior probability of R. This is
possible because the relationship that 4 is at least as refined as B depends only

on the marginal pf.’s v4 and vpg of each expert. When we consider the joint p.f.

13
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of their predictions, and the conditional probability of R given both predictions.

the situation can change drastically. as the following simple example shows.
Let X and Y denote the predictions of experts 4 and B. respectively. and
3

1 :
suppose that both X' and } can have only the two possible values g and 4

Suppose also that the joint distribution of X and Y is as follows:

.1 1
Pr¥=gv=g) = 5
Pr(.\':%.)'zg) = Pr(_\'zz } =§)=1'—3ﬁ (5.1)
m(x:%,xeg) - %
and that
m(n}.x:%,y:%):m(ﬂ\=§,)'=§)=1
Pr(ﬁ|\=%.1'=§)=Pr(ﬁl\=§.)'=%)=o (5.2)
We will now show both expert 4 and expert B are well calibrated:
m(n)x:i) = Pr(Ri\:i.) =1)Pr()'—i§\=i)
+ Pr(Ri\:l,) = )Pr()'-jl\:i)
1 /41 3 1
- 16/(16 16>—4 =
and
14
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Together, (5.3) and (5.4) show that expert 4 is well calibrated since the posterior

probability of R given A's prediction X' = r is simply r itself. The analogous

b

§

calculation shows that

1 1 s B i

Pr(R|yY=7)=7 and Pr(R|¥=3)=7 . (5.3)

W
which proves that expert B is also well calibrated.

Hence. if you learn either the prediction of expert 4 or of expert B. but not
hoth. that prediction will hecome your posterior probability of R. On the other
hand, if you could learn the predictions of both experts 4 and B. then (5.2)
reveals that you would be certain whether or not R will occur. In summary. in

this example the combination of two relatively imprecise well-calibrated experts

can be completely informative as to whether R will occur.

8 Ordering all experts

As we have discussed, the relation of refinement induces only a partial ordering of

the class of well-calibrated experts. It is natural to try to obtain a total ordering of
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this class, and one way to accomplish this ordering is to assign a numerical measure
of quality to the experts. Thus, we wish to assign a value m(r) to each p.f. v
defined on the set X' and having mean y. The values m(1~) should be assigned
in such a way that the “better” experts receive t};e larger values. We interpret
this requirement to mean that if expert 4 is at least as refined as expert B. then
m(14) > m(vg), with strict inequality unless the p.f.’s 4 and g are identical. (A
function m with this property is called Schur-convex: see. for example. Marshall
and Olkin. 1979, or DeGroot and Eriksson. 1985).

One way to develop appropriate measures of quality is to invoke the concept
of strictly proper scoring rules (see, e.g., Staél von Holstein. 1970; Savage. 1971:
Winkler, 1977 and 1986: or DeGroot and Fienberg, 1983). Suppose that if an
expert’s prediction is r and the event R actually occurs, the expert wiil receive a
score gi(r); whereas if R does not occur, the expert will receive a score g-(r). We
assume that the expert desires to maximize his or her score. so we will assume
that g;(r) is an increasing function of r and that g.(r) is a decreasing function of
r. Together, the pair of functions (g;,g,) is said to form a scoring rulr.

(‘onsider now the possibility that although an expert's actual subjective prob-
ability of R is p, the prediction that the expert reports is . where r is not neces-
sarily equal to p. (This possibility clearly exists for a human expert. although it

may not exist if the expert is actually an expert system, i.e.. a computer program.)
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Under these conditions, the expert’s expected score is

pai(r) + (i - plga(7) . (6.1)

The scoring rule (g;.9.) is said to be strictly properif + = p is the unique value
of r that maximizes (6.1).

The idea behind strictly proper scoring rules is that they are supposed to
encourage the expert to report an “honest™ prediction because only such a report
maximizes the expert’s expected score. Of course. for this idea to be effective.
one must somehow motivate the expert to want to maximize his or her expected
score. Nevertheless, strictly proper scoring rules are precisely the appropriate
class of scoring rules that should be considered in order to obtain measures of
quality m having the property that we desire.

Suppose therefore that (g;.gs) is a strictly proper scoring rule. and let

g(r) = xgi({r) + (1 — v)galx) . (6.2)

Then it can be shown (Savage, 1971) that g(x) must be a strictly convex function
on the interval 0 < r < 1. Now let the measure of quality m be defined for any
p.f. v by the relation

m(v) =\ g(rp(r) . (6.3)
red

In other words, the measure of quality m(r) that you assign to a well-calibrated

expert who is characterized by the p.f. v is simply your expectation of the score
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that the expert will receive, hefore you learn the expert’'s prediction .X'. The next

result now follows from Theorem 4 and the extra consideration that g is not only

convex. hut strictly convex.

Theorem 6. If expert A is at least as refined as expert B. then m(14) > m(rg).
with strict inequality unless v (z) = vg(r) for all rel’.

In summary. each choice of a strictly proper scorirg rule leads to a (strictly)
Schur-convex measure of quality m. by means of the construction (6.2) and (6.3).

The two most widely known strictly proper scoring rules for the evaluation of

forecasters are the Brier scoring rule (Brier, 1950). defined by the relations
alr)= —(z =1, galr)=-r*. (6.4)

and the logarithmic scoring rule (Good. 1952). defined by the relations
gi{r)=logr. galz)=Ilog(l-r). (6.3)

Others are described in the references already cited in this paper.
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