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Abstract 

A Bayesian approach to the problem of comparing experts or expert systems 

is presented. The question of who is an expert is considered and comparisons 

among well-calibrated experts are studied. The concept of refinement, in various 

equivalent forms, is used in this study. An informative example of the combination 

of the opinions of well-calibrated experts is described. Total orderings of the class 

of well-calibrated experts are derived from strictly proper scoring rules. 

u    - . -     .    . ^ Kcywordstand phrases: Predictions; forecasters,' well calibrated; expert sys- 

tems,' combining opinion,' scoring rules. - - 
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1    Introduction 

In the fields of artificial intelligence and expert systems, the necessity of assess- 

ing uncertainty and of coping with that uncertainty by developing methods for 

decision making under uncertainty are now widely recognized. In this paper. I 

will argue in favor of the Bayesian approach to assessing uncertainty, and then 

describe some ways in which this approach can be used to compare experts or 

expert systems. 

The argument in favor of the Bayesian approach proceeds in two steps: (1) 

The quantitative assessment of uncertainty is in itself a sterile exercise unless that 

assessment is to be used to make decisions. (2) The Bayesian approach provide« 

the only coherent methodology for decision making under uncertainty (see, e.g.. 

Savage. 1954; DeGroot, 1970; or Lindley. 1987). 

The Bayesian approach to the assessment of uncertainty is defined to be thf» 

approach in which any uncertainty about the values of various quantities on the 

part of the decision maker or the person receiving information from an expert or 

an expert system is represented by the person's subjective joint probability dis- 

tribution for those values. Indeed, in the fields of artificial intelligence and expert 

systems, the terms "Bayesian approach"' and "probability approach" are often 

used interchangeably. This usage is appropriate because the Bayesian approach is 

not characterized, as is sometimes stated, by the repeated use of Bayes" Theorem. 
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but by the ubiquitous specification of probabilities to represent uncertainty. 

Two other approaches to the representation of uncertainty in expert system.; 

that, have been widely discussed are belief functions (Shafer, 1976. 1982. 1987) and 

fuzzy logic (Zadeh, 1979. 1983). Both of these approaches can provide reasonable 

approximations to probability under special conditions when it is not necessary 

for a decision maker to specify a fully-detailed, hißh-dimensional joint probability 

distribution for all of the quantities about which he or she is uncertain in order 

to be able to choose an effective decision. In general, however, neither of these 

approaches provides a coherent operational meaning in all decision problems, the 

way probability does. 

Belief functions are closely related to the concept of upper and lower probabil- 

ities (Dempster. 1967), whereby the unique probability of an event is replaced by 

an upper and a lower probability. However, has always seemed to me to be a step 

in the wrong direction to say that because it is too difficult to specify a precise 

number for the probability of some event, we will specify two  precise numbers. 

There is little doubt that all of these approaches can contribute to the insights 

that can be gained from a thorough analysis of a particular situation. But. unfor- 

tunately there is a tendency on the part of people, including scientists, to view the 

world as a dichotomy comprising, on the one hand.* the group to which they be- 

long, and on the other, everyone else. Thus, those who follow a Bayesian approach 

consider the world to be divided into Bayesians and non-Bayesians. I suppose that 
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those who work with belief functions consider the world to be divided into be- 

lievers and nonbelievers. It is a tribute to the talent and charisma of Professor 

Zadeh that so many scientists identify with a group that can only be called "fuzzy 

thinkers," when the rest of the world must be "clear thinkers." It is from such a 

dichotomous outlook that the Bayesian approach is adopted here. 

In this paper we will restrict ourselves to problems in which you must determine 

your subjective probability of some event /?. such as the probability that it will 

rain tomorrow in some particular location, or the probability that a particular 

patient has a certain disorder. It is assumed that you can consult an expert or an 

expert system to guide your evaluation of this probability. Thus, you will want 

to combine the expert's prediction, i.e., the expert's probability of R. with your 

own information to get your posterior probability of R. 

In Section 2 we consider the question of who should be considered an expert 

and define the class of well-calibrated experts. In Section 3 we describe a perfect 

forecaster and a useless forecaster and introduce the problem of comparing well- 

calibrated experts. In Section 4 we induce a partial ordering in the class of well- 

calibrated experts by means of the concept of refinement and present several 

theorems that give equivalent ways of describing this partial orderinR. In Section 5. 

we show how combining the predictions of two relatively imprecise well-calibrated 

experts can yield perfect predictions. Finally, in Section 6. we show how a total 

ordering in the class of well-calibrated experts that preserves the partial orderinR 
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already obtained can be induced by means of the concept of strictly proper scorinj! 

rules. 

2    Who is an expert? 

We continue to consider the situation in which you must determine your subjective 

probability of some specific future event, and you can consult an expert (or an 

expert system) and obtain the prediction, i.e.. the probability, of that expert. The 

question arises in this context as to just who should be regarded as an expert. 

Somewhat surprisingly, most articles regarding the evaluation, comparison, or 

combination of expert opinion, including my own articles, do not consider this 

question at all. Some exceptions to this silence are Morris (1974). who states that 

"We shall refer to ...a person who provides a judgment concerning uncertain 

matters as an expert," and Morris (1977), who defines an expert "to mean anyone 

with special knowledge about an uncertain quantity or event." Schervish (1984) 

writes, "... we understand the word experi in a very loose sense. We will assume A' 

is an unknown quantity of interest, and we will call an expert anyone who is willing 

and able to state some aspect of their subjective distribution for A'." Winkler 

(1986) describes a "notion of goodness" of a probability appraiser which he call? 

"expertise" and which "relates to the degree to which the probability appraiser 

can approach perfect forecasts." This concept of expertise is closely related to the 

[wvvm^vv^y-^msw^ ■>>v<<'^:'-:':-:. /.N-: 
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concepts of calibration and refinement to be discussed in the subsequent sections 

of this paper. 

Two extreme definitions of an expert seem possible. At one extreme, in the 

spirit of the authors just mentioned, we could define an expert to br anyone or 

any system that will give you a prediction. 

At the other extreme, in this paper we will define an expert to be someone 

whose prediction you will simply adopt as your own posterior probability without 

modification. This will be the case if you believe that the expert has al! of the 

information that you have that may be relevant to the occurrence or nonoccurrer-e 

of the event, and possibly additional information as well, and you believe that the 

expert processes all of this information in the way that you would process it if you 

had the information and the proper technical traininR. Of course, one way to be 

certain that the expert or expert system has all of the information that you have 

is to tell it everything that you know that is relevant. 

This definition seems satisfactory if you are dealing with just a single adviser, 

but it raises conceptual difficulties if two advisers are present. You might very 

well be willing to adopt the prediction of either adviser as your own posterior 

probability if that was the only prediction available to you. However, after you 

have learned the prediction of the first adviser, you may no longer regard the sec- 

ond adviser as an expert according to this definition because, rather than simply 

accepting the second advisers prediction, you would typically want to combine it 
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with the first adviser's prediction in some way to develop your own overall pos- 

terior probability. Nevertheless, in the presence of just a single advisory system. 

we can say in accordance with this definition that you have succeeded in building 

an expert system for yoxirselfii yov will accept its prediction in each case that it 

might handle. 

In some of the literature (see, e.g.. DeGtoot and Eriksson, 1985) an expert or 

an expert system is said to he well cchhrnftilifyon will adopt its prediction as your 

own posterior probability. Based on the discussion that has just been given here, 

it would be unnecessary to use the term "well calibrated" in this paper because 

that property is now simply the defining characteristic of an expert. Nevertheless. 

for the slight cost of being redundant and the great gain of being clear about the 

relationship of this paper to other work on the same subject, we will use the term 

"well-calibrated expert" to denote an expert or a system of this type. 

3    Comparing well-calibrated experts 

Well-calibrated experts can exhibit a wide variety of different types of predictive 

behavior. Let A' denote the prediction that a particular well-calibrated expert will 

make in a given situation. In other words. A' is the probability that the expert 

will state for the occurrence of the event R being predicted. Before you learn the 

prediction of the expert. A' is a random variable since you are not certain what 



rinrinrinffijH^nrmrv VVJ^ IBWHDWBBWWWBW Vüraitt*minwmnwv™K™wi*mi&™**farrv^*3rKw*s*jrKr*r*s%rKv* vw\ 

the expert's prediction will be. 

At one extreme in the class of well-calibrated experts is the perfect forecaster 

who makes only the predictions X = 0 and A" - 1 and who you know is always 

correct. In other words, this expert simply states with certainty, and without 

error, whether or not the event R will occur. Suppose that your prior probability 

of R is // and let //'denote your posterior probability of R after learning this 

expert's prediction. Then //' will be either 0 or 1. Since £{//') = //. where the 

expectation is taken with respect to your prior distribution for //'. it follows that 

you must assign probability /» to the possibility that the expert's prediction will 

be A' = 1, and probability 1 — // to the possibility that A' = 0. 

At the opposite extreme in the class of well-calibrated experts is the useless 

forecaster whose prediction you know will be X = fi. In other words, you know- 

that this expert is simply going to repeat your own prior probability back to you. 

This situation arises when you regard yourself as your own expert or your own 

expert system. 

The basic question that we will now discuss is how to compare other well- 

calibrated experts whose predictive behavior lies somewhere between the two ex- 

tremes that have just, been described. Much of the discussion to be presented is 

based on the material in DeGroot and Fienberg (1982. 1983. 1986) and DeGroot 

and Eriksson (1985), and further details, proofs, and derivations of the results can 

be found in those references. 
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In the approach to be followed here, each well-calibrated expert is characterized 

by your probability distribution for the expert's prediction X. For simplicity, we 

will assume that A' is restricted to lie in a given finite subset A' of the closed unit 

interval [0. 1]. In effect, we are assuming that the expert's probability of R is 

always stated to just a fixed number of decimal places. As one example, we are 

all familiar with the fact that weather forecasters on American television always 

state their probability of precipitation to just a single decimal place. Hence, each 

expert can be characterized by the discrete probability function (p.f.) i'(r) of his 

or her prediction A'. 

If the expert reports A = x, then your posterior probability of R will be r. 

Hence, if your prior probability of R is //. then as we have already indicated. 

E(X) = /». Thus, the comparison of all well-calibrated experts reduces to the 

comparison of all probability distributions on the set A' with mean /(. 

Intuitively, it should be clear that the best experts are those about whose 

predictions you are most uncertain; i.e., whose predictions are most variable. If 

you are fairly certain in advance wLat prediction the expert will make — i.e.. if 

the p.f. U(T) is tightly concentrated around its mean // — then there is little gain 

in consulting the expert. In the next section we shall make this notion rigorous. 
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4    Refinement 

One well-calibrated expert .4 is said to he ni Imsf na rrfinrd ns another well- 

calibrated expert B if we can simulate expert B's prediction from expert .4"s 

prediction and an auxiliary randomization. That is. we can simulate B's predic- 

tion by passing .4's prediction through a noisy channel. Note that this does not 

mean that we can reproduce B's actual prediction from knowing .4*s prediction. 

but rather that we can generate a prediction that has the same stochastic prop- 

erties as B's prediction. The technical definition of this concept is based on th** 

following notion of stochastic transformations: 

A stochastic iransformal ion    h{y \ T) i$ a. nonneRative function defined on 

A* >< A' such that 

V h{y | T) = 1    for every    T(X 
ytX 

(4.1) 

If the experts .4 and B are characterized by the p.f.'s f',i(.r) and ^(.r). then .4 is 

defined to be at least as refined as B if there exists a stochastic transformation 

h{y | T) such that 

y^hly \ x)t'A(T) = i'B(y)    for    ye.X (4.21 
rtX 

Y^hiyl T).ruA(T) = yi'Biy]    for    yf.X 
r<X 

N.3) 

The comparison of experts in terms of the concept of refinement is very strong. 

In fact it can be shown that if ,4 is at least as refined as B and vou are given a 
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choice between learning the prediction of .1 or the prediction of B. you will prefer 

to learn that of A, regardless of the decision proMem in which the prediction will 

be used; i.e., regardless of your utility function. The price that must be paid for 

using this strong method of comparison is that not all experts will be comparable. 

In other words, the concept of refinement introduces only a partial ordering in the 

class of p.f.'s //(r) with mean //. 

It is easy io verify that the perfect forecaster described in Section 2 is at 

least as refined as any other well-calibrated expert, and that every well-calibrated 

expert is at least as refined as the useless forecaster described in that section. 

We shall now describe several conditions that are equivalent to the proposition 

that .4 is at least as refined as B. Each of these equivalent conditions makes it 

possible to determine whether or not A is at least as refined as B without having 

to attempt to construct a stochastic transformation h that satisfies the defininon 

(4.2) and (4.3). 

The theory of refinement is essentially a reformulation of the theory of the 

comparison of statistical experiments as developed by Blackwell (1951. 1953). 

and from that development we can obtain further characterizations of the desired 

type. For any well-calibraied expert, let F denote the distribution function (d.f.) 

corresponding to the p.f. i/; i.e., let 

F{t) =       JT       /'U)    for    0 ^f '_\    . (4.4) 

10 
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Now consider two arbitrary well-ralihrated experts .4 and 5, and let F* and 

Fa denote their d.f.'s. The following result is analogous to Theorem 12.4.1 in 

Blackwell and Girshick (1954). 

Thcnrem 1. Expert ,4 is at least as refined as expert B if and only if 

/ FA{x)dj >   [ FB{.r)dT 14.51 
Jo Jo 

for all values of f in the interval 0 < / < 1. 

The relationship (4.5) between the d.f.'s f^ and Fg is known as sfcntiH-ihijrf 

stochastic dominance (see. e.g., Fishburn and Vickson. 1978). 

Now let XQ < ri < ... < .r;. denote the finite number of points in the set X. 

The following equivalent condition can be derived from (4.5): 

Theorem 2. Expert .4 is at least as refined as expert B if and only if 

;-i 

^JJ-J-XJI^UJ-VBUJI^O    for   ; = 1 k-\    . (4.0) 
i=0 

Another equivalent condition can be presented in terms of the Lorenz curve, 

which is defined as follows (see, e.g.. Gastwirth. 1971): 

Suppose that F is the d.f. of an arbitrary non-negative random variable and. 

for 0 < // < 1. define 

f-1!«) = inf{< : f(n > "}    • (4.7) 

The function F-1 is called the quantile function corresponding; to the d.f. F. If /( 

again represents the mean of the distribution with d.f. F. then the Lorenz curve 

11 
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1(f) corresponding to the d.f. F is given by 

1   /"' 
1(f) =      /   F-l(u)iin    for    0 < f < 1    . (4.8) 

// JQ 

For any d.f. F, the Lorenz curve 1(f) is a convex, nontlecreasing function on 

the interval 0 < f < 1 such that 1(0) = 0 and 1(1) = 1. When F is the d.f. of a 

discrete distribution concentrated on just a finite number of points, as is true of 

all the d.f.'s we are considering in this paper, then L{f) is also piecewise linear. 

Now consider again two well-calibrated experts .4 and B. and let Z. 4 and Lg 

denote the Lorenz curves corresponding to their d.f.'s F^ and FB- 

Theorrm 3. Expert .4 is at least as refined as expert B if and only if 

LAV) < Lßii)    for all    0 < f < I    . (4.'!) 

The next two equivalent conditions that will be presented give additional in- 

sight into the relationship of refinement, but do not provide a direct way of veri- 

fying that this relationship holds. 

Thronm 4- Expert .4 is at least as refined as expert B if and only if 

^(^(■P)^ ]r«7(j>B(;r) (4.10) 
It AL ItX 

for every convex function g on the interval [0. l!. 

Theorem 5. Expert .4 is at least as refined as expert B if and only if there 

exists a stochastic transformation rjiz \ y) such that 

Xi 7U I l/^slif) ='MM    for    Ti.X    . (4.11; 



Y^r-qir \y) - y    for    j/e,Y    . (4.12) 

Theorem 5 is interesting because it shows that althoußh the definition of .4 

being more refined than B depends on the existence of a stochastic transformation 

from .r to y satisfying certain properties, there is an equivalent condition in terms 

of a stochastic transformation from y to .r satisfying certain olher properties. 

Results of the type that have been presented here are closely related to the 

theory of majorization. as described, for example by Marshall and Olkin (1979). 

Indeed, one final equivalent way of saying that .4 is at least as refined as B is to 

say that the p.f. i'A majorizes the p.f. t'g. 

5     Two experts 

As we have stated, if expert .4 is at least as refined as expert B and you are 

given a choice between learning either the prediction of expert .4 or the prediction 

of expert B (at the same cost), then you will always prefer to learn that of .4. 

regardless of the use you are going to make of the prediction. However, it should 

also be emphasized that if you can learn the prediction of expert B in addition 

to the opinion of expert .4, then that additional information will often be useful 

in the sense that it will further modify your posterior probability of /?. This is 

possible because the relationship that .4 is at least as refined as B depends only 

on the marRinal p.f.'s 1/4 and vg of each expert. When we consider the joint p.f. 

13 
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of thrir predictions, and the conditional probability of /? given both predictions, 

the situation can change drastically, as the following simple example shows. 

Let A' and V denote the predictions of experts .4 and B. respectively, and 

1 3 
suppose that both A* and 1' can have only the two possible values  -  and  -. 

Suppose also that the joint distribution of A' and Y is as follows: 

Pr(x=l-,Y = Z~] =  pr(A = ^.y=M = i   . (.in 
V 4 A' \ 4 4/16 

Prlx = ly*)    =    1    , 
V 4 4/ Ui 

and that 

V    I 4 4/ V    I 4 4/ 

We will now show both expert .4 and expert B are well calibrated: 

Pr^x-D =„(fli,v4r^Hv=;1.v-;) 

+ "{*\*->-l)r'{y-l\*-\) 
I   // 1       3 \      1 

=   16/(l6+16) = 4 ,5-31 

and 

14 
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i" X = 

=    i/(i+lU?    . 
16/  \1G      16/      4 

4 
.Y = 

4 ' 

I) 

(5.4i 

Together, (5.3) and (5.4) show that expert .4 is well calibrated since the posterior 

probability of R given .4"s prediction A'  = .r is simply .r itself.   The analogous 

calculation shows that 

1\       1 
Pr(R\Y = -) = -    and    Pr(/?|r = •J.O I 

which proves that expert B is also well calibrated. 

Hence, if you learn either the prediction of expert .4 or of expert B. but not 

both, that prediction will become your posterior probability of R. On the other 

hand, if you could learn the predictions of both experts .4 and B. then (5.2) 

reveals that you would be certain whether or not R will occur. In summary, in 

this example the combination of two relatively imprecise well-calibrated experts 

can be completely informative as to whether R will occur. 

6     Ordering all experts 

As we have discussed, the relation of refinement induces only a partial orderinp; of 

the class of well-calibrated experts. It is natural to try to obtain a total ordering of 

15 
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this class, and onr way to accomplish this ordering is to assign a numerical niesMire 

of quality to the experts. Thus, we wish to assign a value m(u) to each p.f. c 

defined on the set .X and having mean //. The values n7(;/) should be assigned 

in such a way that the "better" experts receive the larger values. We interpret 

this requirement to mean that if expert .4 is at least as refined as expert 5. then 

m{Vji) > Tn(uB), with strict inequality unless the p.f.'s t^ and I'B are identical. (A 

function m with this property is called Schur-convex; see. for example. Marshall 

and Olkin. 1979. or DeGroot and Eriksson. 1985). 

One way to develop appropriate measures of quality is to invoke the ronrept 

ot strictly proper scoring rules (see, e.g., Stael von Holstein. 1970; Savage. 1071: 

Winkler, 1977 and 1986; or DeGroot and Fienbers;. 1983). Suppose that if an 

expert's prediction is T and the event R actually occurs, the expert will receive a 

score gx(T); whereas if R does not occur, the expert will receive a score ^(.r). We 

assume that the expert desires to maximize his or her score, so we will assume 

that g\{T) is an increasing function of r and that g^r) is a decreasing function of 

x. Together, the pair of functions (^1,52) 's said to form a scoring rulr. 

Consider now the possibility that although an expert's actual subjective prob- 

ability of R is p, the prediction that the expert reports is .r. where x is not neces- 

sarily equal to p. (This possibility clearly exists for a human expert, alt hough it 

may not exist if the expert is actually an expert system, i.e.. a computer program.) 

16 
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Under these conditions, the expert's expected score is 

P9i{-r) + {\-p)g^T)    . (6.1) 

The scoring rule {g^.g?) is said to be sfricfly /roper if ,r = ;» is the unique value 

of ,r that maximizes (6.1). 

The idea behind strictly proper scorina; rules is that they are supposed to 

encourage the expert to report an "honest" prediction because only such a report 

maximizes the expert's expected score. Of course, for this idea to be effective. 

one must somehow motivate the expert to want to maximize his or her expected 

score. Nevertheless, strictly proper scoring rules are precisely the appropriate 

class of scoring rules that should be considered in order to obtain measures of 

quality m having the property that we desire. 

Suppose therefore that (gi.g*) is a strictly proper scoring rule, and let 

g{T) = Tgl{T) + (\-T)g2{T)    . (6.2) 

Then it can be shown (Savage, 1971) that g(x) must be a strictly convex function 

on the interval 0 < .r < 1. Now let the measure of quality w be defined for any 

p.f. i/ by the relation 

m(u) = Ytg(.r)u{T)    . (6.3) 

In other words, the measure of quality "»(''') ♦hat you assign to a well-calibrated 

expert who is characterized by the p.f. u is simply your expectation of the score 



that thp expert will receive, before you learn the expert's prediction .V. The next 

result now follows from Theorem 4 and the extra consideration that g is not only 

convex, hut strictly convex. 

Theorem 6. If expert .4 is at least as refined as expert B. then "»(/'.j) > ni(i'B)- 

with strict inequality unless J-'JIT) = I'B(
T
) for ai! T(A'. 

In summary, each choice of a strictly proper scoring rule leads to a (strictly) 

Schur-convex measure of quality 771. by means of the construction (6.2) and (0.3). 

The two most widely known strictly proper scoring; rules for the evaluation of 

forecasters are the Brier scoring; rule (Brier. 1950). defined by the relations 

gii-r) = -(* - 1)' .    giir) = -r" (6.4) 

and the logarithmic scoring rule (Good. 1952). defined by the relations 

yi(j-)  =  logX  .        ^;(r)  = log(l  - T)  . (6.5) 

Others are described in the references already cited in this paper. 
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